US 20220092240A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0092240 A1

Chi et al. 43) Pub. Date: Mar. 24, 2022
(54) SYSTEM FOR MACHINE LEARNING-BASED Publication Classification
ACCELERATION OF A TOPOLOGY (51) Int. Cl
OPTIMIZATION PROCESS GO6F 30027 (2006.01)
(71) Applicants:Siemens Aktiengesellschaft, Munich GOGF 30723 (2006.01)
(DE); Georgia Tech Research (52) US. ClL
Corporation, Atlanta, GA (US) CPCcc..... GO6F 30/27 (2020.01); GOGF 30/23

(2020.01)
(72) Inventors: Heng Chi, Plainsboro, NJ (US); Yuyu
Zhang, Atlanta, GA (US); Tsz Ling (57 ABSTRACT
Elaine Tang, Plainsboro, NJ (US);

Janani Venugopalan, Plainsboro, NJ A system and method for accelerating topology optimization

(US); Lucia Mirabella, Plainsboro, NJ of a design includes a topology optimization module con-
(US)T Le Song, Atl anta, GA (US); ’ figured to determine state variables of the topology using a
. > ; ; two-scale topology optimization using design variables for a
Gl Paulino, Mableton, GA (US pOloBYy Op g desig
auclo Tautine, Vablelon, US) coarse-scale mesh and a fine-scale mesh for a number of
(21) Appl. No.: 17/422,282 optimization steps. A machine learning module includes a
fully connected deep neural network having a tunable num-
(22) PCT Filed: Jan. 29, 2020 ber of hidden layers configured to execute an initial training
of' a machine learning-based model using the history data,
(86) PCT No.: PCT/US2020/015600 determine a predicted sensitivity value related to the design

variables using the trained machine learning model, execute
an online update of the machine learning-based model using
updated history data, and update the design variables based
on the predicted sensitivity value. The model predictions
reduce the number of two-scale optimizations for each

§ 371 (e)(D),
(2) Date: Jul. 12, 2021

Related U.S. Application Data

(60) Provisional application No. 62/798,153, filed on Jan. optimization step to occur only for initial training and for
29, 2019. online model updates.
200 1 Online 2" Online
— Update of Update of
MLM with MLM with
new new
training training
data data
N 5 Ne= 10 Nr=10
201 | »
\ | ‘ ‘ | v ‘ » ‘ | | | ‘ | ‘ | |
EEEEEEEEEREEEEREEREEEE
5 10 ;15 20 25! 30 35
; f Standard .
: > - i
Standard finite element i N finite element
optimization to compute i Predict Sensitivity G opttm|zatuon\
state variables and ! using trained MLM A\// to compute A
sensitivity G i > exact data —
; | Predict Sensitivity G
,,,,,, o using updated MLM
Collect -
history
data and
use for
Initial
MLM

Training

Mar. 24, 2022 Sheet 1 of 7 US 2022/0092240 A1

Patent Application Publication

T 'Old

10SS200.1d

SINPOIN
Suiuiea suyoe

50T \

AN

Suidde|p
2je2s-auly

guidde|p]
2je2S-95480)

uoireziwndop
A3ojodo|

AlOWIB N

— Q1T

— P11

—~ C1T

[~ TT1

//| 011

/ 00T

US 2022/0092240 A1

Mar. 24, 2022 Sheet 2 of 7

Patent Application Publication

¢ 'Ol

/ 102

Buluel |
WIN
fediv]
Jjoj esn
pue ejep
Aioisiy
“ _ 0900
NTIN patepdn Buisn -
0 Alanisuag 1o1paid ;
- ‘' Aianisuss
= Blep 10exa ;
y //Eso_Eoo o \)4 INTIA paures) Buisn pue sa|geLeA ajels
co uoneziwndo 6 AlAISUSS 10Ipaid 21ndwiod 01 uonezZIWndo
Em.Em_.o H_cz - P luswaje sluly pJepuels
piepuelg
g€ o€ or 02 Sh Ok S
HEEEN :;mﬂgii
0L =N 0L =N _Z

Blep elep
Buiuren Buiuren
mau mau
Uim NN UM AN
jo arepdn 10 erepdn

SUNUO @ SUluO

Q
o
o

Patent Application Publication = Mar. 24, 2022 Sheet 3 of 7 US 2022/0092240 A1

P
Sensitivity

/
Output
Layer

313—

HiddenuLayers
FIG.3

312

Input Layer

311 _//

Fine-scale

300 \\
301 \é

302

Patent Application Publication = Mar. 24, 2022 Sheet 4 of 7 US 2022/0092240 A1

Fine-scale mesh

Coarse-scale mesh

412
411

oo

FIG. 4

L
b
. g .23

401

TR SRS F IR SET

AN
X

2/0092240 A1

US 202

atent Application Publication

S 'Ol

; [4)

ssauuns o Buddey

v

«

S

N

N — 6€9

= 4

<

(o]

a saoUeISUl

M Suiuleay

= 1321100 ‘
.
k-

fm .

- Sa2UBISUl \%

= pioA \x

D

= ENIITEN] ”

Q /omm

& €9 //

< / ySBW 9|eds-95120D UO paseq 0z9

am 0€9 $3OUBISU| DO 03Ul USISap |BqO|8 9sod w03

=

=

019

Patent Application Publication

L 'Ol

US 2022/0092240 A1

Tl
€Ll @
— 19
o~ UL — =
[
(=]
r~
b
<
7 98Z STINAON
o INVYO0Yd ¥IH1O
m, IOVAHILNI JOVIHILNI oo
s NHOMLIN 1NdNI 435N NIy
= 0LL 09/ —
= INILSAS ONILYYIAO
_ SNG INILSAS —
& el — | TEL AVY
B YITIONINOD —
E £p, — L VIGIN/ISIO SYOS53904d LEEZ SOIs |
A , , TS/ INOH
: S 0
2 ~ 0zL
S we N 1,
S OVZ 39VHOLS 0L —
E
< 0TL
=
2
[
=W

(=

US 2022/0092240 Al

SYSTEM FOR MACHINE LEARNING-BASED
ACCELERATION OF A TOPOLOGY
OPTIMIZATION PROCESS

TECHNICAL FIELD

[0001] This application relates to topology optimization
useful for engineering shapes of material in the context of
withstanding various operating conditions. More particu-
larly, this application relates to machine learning-based
acceleration of a topology optimization process.

BACKGROUND

[0002] Topology Optimization has gained a lot of interest
in engineering for its ability of generating automatically
innovative shapes, such as in the field of additive manufac-
turing, that can withstand the operating conditions typical of
the context in which the engineering component is utilized,
while optimizing on one or more objectives. However, the
traditional approach to perform topology optimization is
computationally very expensive, as it requires solving a
multi-physics problem multiple times to evaluate both the
physics variables and sensitivity during the optimization
cycle. Finite elements analysis (FEA), which is based on the
finite element method (FEM), it is a technique that makes
use of computers to predict the behavior of varied types of
physical systems such as deformation of solids, heat con-
duction and fluid flow. Geometry of an object is defined by
elements of a mesh and analyzed for external influences (i.e.,
boundary conditions).

[0003] Parallel computing or graphical processing unit
(GPU) based programming are sometimes employed for
topology optimization to reduce the generation time of one
optimized design. Some other approaches have been found
in the literature that try to use past data acquired during past
runs of the topology optimization study to speed up a new
instance of the same topology optimization case. However,
such approaches have limited applicability as the informa-
tion learned from past cases are not likely to transfer to new
optimization cases which may vastly differ with the past
ones.

SUMMARY

[0004] A system and method for accelerating topology
optimization of a design includes a topology optimization
module configured to determine state variables of the topol-
ogy using a two-scale topology optimization using design
variables for a coarse-scale mesh and a fine-scale mesh for
a number of optimization steps. A machine learning module
includes a fully connected deep neural network having a
tunable number of hidden layers configured to execute an
initial training of a machine learning-based model using the
history data, determine a predicted sensitivity value related
to the design variables using the trained machine learning
model, execute an online update of the machine learning-
based model using updated history data, and update the
design variables based on the predicted sensitivity value.
The model predictions reduce the number of two-scale
optimizations for each optimization step to occur only for
initial training and for online model updates.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Non-limiting and non-exhaustive embodiments of
the present embodiments are described with reference to the

Mar. 24, 2022

following FIGURES, wherein like reference numerals refer
to like elements throughout the drawings unless otherwise
specified.

[0006] FIG. 1 is a block diagram for an example of a
system for accelerated simulation setup in accordance with
embodiments of the disclosure.

[0007] FIG. 2 illustrates an example of a method for
accelerated simulation setup in accordance with embodi-
ments of the disclosure.

[0008] FIG. 4 illustrates an example of coarse-scale and
fine-scale meshes for a cantilever beam design problem.
[0009] FIG. 3 shows an example architecture of a fully
connected DNN model according to embodiments of this
disclosure.

[0010] FIG. 5 illustrates a mapping of fine-scale elements
to a coarse-scale element in accordance with embodiments
of the disclosure.

[0011] FIG. 6 illustrates a 2D representation of two mesh
scales for a cantilever beam design problem.

[0012] FIG. 7 shows an exemplary computing environ-
ment within which embodiments of the disclosure may be
implemented.

DETAILED DESCRIPTION

[0013] Methods and systems are disclosed for a topology
optimization process enhanced by an algorithm that learns
from a current iteration of the topology optimization process
rather than relying on past data. A machine learning-based
topology optimization framework provides a general
approach which greatly accelerates the design process of
large-scale problems in 3D. The machine-learning based
model is trained using the history data of topology optimi-
zation, which data may be collected during topology opti-
mization and, therefore, does not require a separate stage for
collecting samples to train machine learning-based models.
Thus, the training occurs in real time during the topology
optimization process rather than prior to it. The proposed
framework adopts a tailored two-scale topology optimiza-
tion formulation and introduces a localized training strategy.
The localized training strategy can improve both the scal-
ability and accuracy of the proposed framework. The pro-
posed framework incorporates an online update scheme
which continuously improves the accuracy of the machine
learning module (or surrogate) by updating based on new
data generated from physical simulations. Implementation
of such a framework for topology optimization results in
reduction of computational costs and significant time sav-
ings, particularly evident for large-scale and multi-physics
(e.g. thermal-flow) problems.

[0014] A topology optimization formulation for the clas-
sical compliance-minimization problem is briefly described
as follows. Herein, it is assumed that the design domain is
discretized by a finite element mesh and a standard density-
based approach is adopted, where the material distribution is
characterized by an element-wise constant function.

[0015] An objective is to find the structural topology
which has the most stiffness under a prescribed load and
boundary conditions (i.e., least possible displacement for the
given boundary conditions under the prescribed load). For
example, multi-variable analysis for optimizing the topology
may involve balancing a variable displacement of points on
a designed body to measure stiffness against a volume
constraint that minimizes the material cost to construct the
designed body. In other words, a preferred design may have

US 2022/0092240 Al

significant voids to minimize material while not sacrificing
too much stiffness necessary to support the design load.
Global measure of displacements is the “compliance”, or
strain energy, of the structure. For a given finite element
mesh with N nodes and M elements, the applied global force
vector is denoted as FER ™!, The vector of design vari-
ables z, whose ith component z, is the design variable
associated with the ith element. Within this setting, an
objective for topology optimization is to minimize compli-
ance and can be expressed by the following:

min () = f7u(z) (&

sit. V(@) =V 2= Vi <0
O<1Viedl,..., M}

with K(@u(z) = f and = Pz,

where: ¢(z) is the compliance function,

[0016] u(z)ER"(dNx1) is the global displacement vector,
[0017] v is a vector whose ith component v, is the volume
of element i,

[0018] gv is a volume constraint function,

[0019] 7z is a filtered design variable vector,

[0020] P is the density filter matrix,

[0021] K is the global stiffness matrix, and

[0022] V,,,, is the maximum allowable volume imposed

on the design.

To ensure the well-posedness of the formulation and impose
a minimum length scale on the design, the filtered design
variable vector 7 is used, where P is the density filter matrix
whose (i,j)th component is given by:

max(0, R - |x} —x3) 2)

Py=c——r"
Y Yhesy R=IxE —x5D

where R is the radius of the density filter, S(j) denotes the set
of indices of elements whose centroids fall within radius R
of the centroid of the jth element, and x,* and x * stand for
the centroid of the ith and jth elements, respectively.
[0023] The standard Solid Isotropic Microstructures with
Penalization (SIMP) scheme is adopted to penalize the
intermediate densities throughout. In the SIMP scheme, the
global stiffness matrix K is interpolated as:

K(7) = U EjkS 3
7

where: kjo is the element stiffness matrix for the jth element
when the material is solid,
[0024] U represents the standard assembly procedure in
the finite element method (FEM), and
[0025] E, is interpolated stifiness of element j normal-
ized by the Young’s modulus of the solid material given
by:
Ey=E iyt (1+E,,)@F *

where: B, is Ersatz stiffness (e.g., 10™), and p is the SIMP
penalization parameter (e.g., p=3). The sensitivity informa-

Mar. 24, 2022

tion is needed to perform the design variable update. Sen-
sitivity vector G with respect to vector z, and sensitivity
vector G for filtered design variable vector z is computed by
the following equations:

_ dc _ 5)
J Yo YR

G; 7z P () kju;,

G=PG. (6)

where v, the displacement vector of the ith element.
In contrast, the sensitivity of the volume constraint function
gv is simply given by the following:

Ogv @)
£ pry,
dz v

Once the sensitivities of both the objective and constraint
functions are obtained, a Modified Optimality Criteria
(MOC) method (e.g., as proposed by Ma et al., 1993) is
applied to update the design variables. The MOC design
update algorithm is able to handle sensitivities with positive
values, which could potentially occur in the machine learn-
ing-based framework of this disclosure. It should be noted
that the proposed machine learning-based framework also
works with any gradient-based design update scheme (e.g.,
the Method of Moving Asymptotes (MMA) by Svanberg,
1987). For a design variable vector z(k) at the optimization
step k, the MOC method updates the design variable vector
for the optimization step k+1 as follows:

maX(Zpins 2 -m) if zf")(Bf"))” < max(Zpin, 20 m) (8)
min(1, 2 +m) if min(l, 2 +m) < ZOBPY

sz)(Bfk))ﬂ otherwise

D

where m is the move limit and 1 is the damping coefficient.
The coefficient B, is given by:

gl B _ Gi(Z) ©

A [Zj (P)jivj]/\’

where | is a shift parameter taken to be the maximum value
of positive sensitivities, given by the following:

Gi(z9) a0
¢ =max{ 0, max 8
X Py

and where A>0 is the Lagrangian multiplier found using a
bisection algorithm (e.g., Bendsoe and Sigmund, 2013) such
that the volume constraint function gv (z*)=0 is satisfied.
[0026] FIG. 1 shows a block diagram of a topology
optimization system in accordance with embodiments of this
disclosure. In an embodiment, topology optimization system
100 includes a processor 105 and memory 110 on which is
stored a topology optimization module 111 and a machine

US 2022/0092240 Al

learning module 115. To execute a two-scale topology
optimization, a coarse scale mapping module 112 and fine
scale mapping module 114 generate coarse-scale and fine-
scale mapping of topology elements useful for solving state
equations when performing nodal displacement analyses on
a test model for the topology design. The topology optimi-
zation system 100 synergistically integrates machine learn-
ing with topology optimization to achieve accelerated and
improved designs. Using an iterative process involving
hundreds of steps, the topology optimization is performed
where for each new design, the structural response of the
current design needs to be solved to compute the sensitivity
of the objective function. For large-scale topology optimi-
zation, this procedure is computationally intensive.

[0027] A large amount of historical data (e.g., design
variables, their corresponding sensitivities, and displace-
ment solutions) is generated during topology optimization,
but typically, not all of the historical data is fully explored
and used. In view of this, a universal machine learning
approach is proposed herein to learn the mapping between
the current design and their corresponding sensitivities from
historical data. Once the machine learning model is trained,
it can be employed in the later optimization steps to directly
predict the sensitivities based on the current design without
solving the state equations.

[0028] The training of the machine learning module 115
consists of two stages: an initial training stage and several
online update stages. To control when to start each stage,
parameters for initial training step N, and online update
frequency N are introduced. Additionally, to control the
amount of history data used in training, parameters are
introduced for window size W, for steps of initial training
and window size W, for steps of an online update. As for the
machine learning-based model, a fully-connected Deep
Neural Network (DNN) may be employed for machine
learning module 115. Other machine learning-based models,
such as the Convolutional Neural Network (CNN), can also
be adopted by the machine learning module 115.

[0029] For initial training of the machine learning module
115, the optimization starts with a standard finite element
analysis (e.g., solving the state equation and computing the
sensitivity based on Eq. (6)) in the first N4 W ,~1 optimiza-
tion steps, and collect the history data from the last W, steps
(i.e. step N, to step N4W,~1) to initially train a machine
learning-based model. In an aspect, data can be discarded
from step 1 to step N;,-1 because for a small initial set of
iterations, results generally have significant variations and
are biased to the initial guess. Subsequently, starting from
optimization step N+W,, instead of following the standard
finite element analysis, the trained machine learning-based
model is applied to directly predict the sensitivities. By
doing this, the computationally expensive task of solving the
state equations and computing the sensitivities can be
avoided.

[0030] To improve accuracy of the predicted sensitivity in
the long term by machine learning module 115, the machine
learning-based model is repeatedly updated online by peri-
odically switching back to the standard finite element analy-
sis for one optimization step to generate new data. The

Mar. 24, 2022

parameter N is used to control the frequency of the online
update, meaning that the online update is performed every
N optimization steps after the initial prediction step (N +
W,). In the online update of the machine learning-based
model, the data is collected from standard finite element
analysis of previous steps for a defined window size W,

[0031]
integrated topology optimization and machine learning pro-
cess in accordance embodiments of this disclosure. A set of

FIG. 2 is an illustration of an example of the

topology optimization steps 201 are shown, where update
parameter selections include initial training step N~=10,
initial training window size W =5, update frequency N =10
and update window size W ,=2. Accordingly, the optimiza-
tion starts with the standard finite element analysis optimi-
zation procedure in the first 14 steps and uses the data
generated from step 10 to step 14 to train the machine
learning-based model. Starting from optimization step 15,
the machine learning-based model is used to predict the
sensitivity. Because the online update frequency is N=10,
the process switches back to the standard finite element
analysis optimization procedure at optimization step 25 to
generate new data for one step. Based on setting window
W, =2, the data in optimization steps 14 and 25 generated by
standard finite element analysis optimization are used as the
input for a first online update the machine learning-based
model, which are the last two steps in which finite element
analysis data was retrieved. As alternative illustrative
example for W =5, then data from steps 11-14 and 25 would
be used for the update, being the last five steps in which
finite element analysis data was generated and obtained. The
updated machine learning-based model is used to predict the
sensitivity in the following steps and to recursively update
the model every 10 steps (according with update frequency
N;=10) until either the convergence criteria are fulfilled, or
the maximum allowable step is reached. As shown in FIG.
2, the 2" online update occurs at step 35, using standard
finite element analysis data from steps 25 and 35 to update
the machine learning-based model.

[0032] In an embodiment, a two-scale topology optimiza-
tion setup, a coarse-scale and a fine-scale, is applied to the
topology optimization framework. This allows full use of the
local information in the historical data and ensures that the
machine learning-based model is both scalable and able to
make accurate sensitivity predictions. On the fine-scale
mesh, all the design variable updates are performed for
every optimization step but only solve the state equations in
those steps that collect the training data. On the other hand,
no design variable update is performed on the coarse-scale
mesh, but the state equation is solved at every optimization
step based on the stiffness distribution mapped from fine-
scale mesh. Strain information on the coarse-scale mesh,
together with the filtered design variables on the fine-scale
mesh, are used as inputs to the machine learning-based
model. Algorithm 1, below, summarizes the topology opti-
mization described above.

US 2022/0092240 Al

Mar. 24, 2022

Algorithm 1: Proposed framework of universal
machine learning for topology optimization.

1 Input: 2%, V., R, T ol, Iter,, .., NO. Ny, WD and W,®

2 Form filter matrix P:

3 for k=0 to Iter,,,, do

4 | Solve the state equation on coarse-scale mest®

5 lifk < N®+ W or mod(max(k - N® - W@, 1@ N;) = 0 then

6 | | Solve the state equation on fine-scale mesK®

7 | | Evaluate sensitivities G and G based on (5) and (6@

8 || Store history dat:Q

9 Ilink=2N®+WD- I then
10 | || Initial training of the machine learning model using last W® step of collected dat:®
11 |l else if mod(max(k - N& - W®, 1) N) = 0 then
12 || | Perform online update of the machine learning model using last Wy, step of collected

Il dat®

13 I lend
14 |else
15 | | Use the machine learning model to predict C®
16 | | Compute the predicted sensitivity as G = PAC®
17 |l end

18 | Update z*® 1) using (8) based on either G or C®

end
20 ifG®@z*®@ 1) - 25@De0 < T ol then
21 | Output: optimization converged and plot final desigr®
22 end

® indicates text missing or illegible when filed

[0033] In embodiments of this disclosure, machine learn-
ing module 115 employs fully-connected Deep Neural Net-
works (DNNs) as the universal function approximator that
takes the input from the two-scale topology optimization
module 111 and predicts the sensitivities of the compliance
function. The topology optimization system 100 is indepen-
dent of any specific implementation of the machine learning
module 115. Thus, other machine learning-based models,
such as Convolutional Neural Networks (CNNs) and
Residual Networks (ResNets), as well as their variants like
the Densely Connected Convolutional Networks
(DenseNets) can be directly applied in the proposed frame-
work.

[0034] FIG. 3 shows an example architecture of a fully
connected DNN model according to embodiments of this
disclosure. In an embodiment, the DNN model consists of
one input layer 311, multiple hidden layers 312, and one
output layer 313. Each hidden layer has a set of neurons,
each of which takes an input value and performs a non-linear
activation to generate its output value. The number of hidden
layers 312 is a hyper-parameter and can be tuned according
to the trade-off between the computational complexity and
model accuracy. Let us denote N, as the total number of
hidden layers 312 in the DNN model. During prediction,
each hidden layer takes the output of previous adjacent layer
as input, and performs feed-forward computation as follows:

h=o(Wh,_+b,i={1, ... N} an

where h; is the output of the ith hidden layer;

[0035] Wi is the weight vector;

[0036] bi is the bias of the ith layer that can be randomly
initialized and then optimized during model training;
and

[0037] of(‘) is a non-linear activation function.

[0038] By convention, ho designates the input of the input
layer 311, which is taken to be a vector collecting the filtered
design variables 7, from the fine-scale mesh 301 and strain
vectors from the coarse-scale mesh 302. Coarse-scale map-
ping module 112 generates the coarse-scale mesh 302 based

on fine-scale mesh 301, which is generated by fine-scale
mapping module 114. For example, fine-scale elements 301
are mapped to coarse-scale mesh element 302 divided into
sectors 302a, 30256, 302¢, 302d according to shading of
corresponding quadrant clusters of the fine-scale mesh ele-
ments 301, where the shading represents state variable
values (e.g., strain) computed by the topology optimization
module 111 for the current optimization step. The output
layer 313 is obtained by applying a linear transformation of
the output of the last hidden layer as:

y=Wo.hn (12)

where W_,, is also a weight matrix, which will also be
learned according to the training data. Herein, the output y
is chosen as the sensitivity of the compliance with respected
to the filtered design variables. In an aspect, a Parametric
Rectified Linear Unit (PReL.U) is used as the activation
function, which generalizes the traditional rectified unit and
is shown to achieve impressive performance on image
classification tasks. The PReLU activation function is
defined as follows:

o(x)=max(0,x)+a*min(0,x) (13)

where: a is a learnable parameter, and
[0039] x is the input of each neuron in the DNN.

To train the DNN model, the training data is collected from
full finite element evaluations in the topology optimization
as the supervision signal. In an embodiment, an Adam
optimization algorithm is used during the training for sto-
chastic gradient-based optimization. In the initial training,
all the learnable parameters in the DNN are randomly
initialized. In each subsequent online update, the optimized
parameters are taken from the last training step as an initial
estimation and are updated based on the new training data
received.

[0040] The proposed integrated framework of this disclo-
sure achieves both accuracy and scalability so that it can be
efficiently applied to design problems of any size. Instead of
applying brute force to the machine learning-based model to

US 2022/0092240 Al

learn the mapping between the filtered design variables and
their corresponding sensitivities, the topology optimization
formulations are tailored to make best use of the data
generated in its history.

[0041] According to Equations (5) and (6), the sensitivity
of'each element depends on both the design variable and the
state variables (e.g., nodal displacements) of that element.
However, the information about the state variables of each
element is not available unless the state equation is solved.
In order to provide sufficient information to the machine
learning-based model and, at the same time, avoid the most
time-consuming step of solving the state equation, a topol-
ogy optimization formulation with two discretization levels
is introduced herein: a coarse-scale mesh and a fine-scale
mesh. As mentioned, the design variables z (and the corre-
sponding filtered design variables 2) live on the fine-scale
discretization and are updated every optimization step.
However, on the fine-scale mesh, the state equations are only
solved in those optimization steps when collecting training
data for the machine learning-based model. One the con-
trary, on the coarse-scale mesh, no optimization is per-
formed, but the state equation is solved at every optimization
step to provide information about state variables to be fed to
the machine learning-based model.

[0042] FIG. 4 illustrates an example of coarse-scale and
fine-scale meshes for a cantilever beam design problem.
Although FIG. 4 depicts a 2D illustration, all numerical
examples presented herein focus on 3D problems. Topology
of a 3D cantilever beam 401 is represented by coarse-scale
mesh 412 and fine-scale mesh 411, each comprising regular
hexahedral (brick) finite elements with linear displacement
interpolations and it is assumed that the fine-scale mesh 411
is fully embedded in the coarse-scale mesh 412. Under this
assumption and because of the regularity of the two meshes
411, 412, every element in the coarse-scale mesh 412
contains the same number of elements in the fine-scale mesh
411. Accordingly, block size NB is a defined parameter that
quantifies how many fine-scale elements are contained on
each side of a coarse-scale mesh element. For example, the
illustration in FIG. 4 has a block size of NB=5, meaning
every element in the coarse-scale mesh 412 constrains
5x5=25 elements of fine-scale mesh 411.

[0043] FIG. 5 illustrates a mapping of fine-scale elements
to a coarse-scale element in accordance with embodiments
of the disclosure. Because the design update is only per-
formed on the fine-scale mesh, the stiffness distribution of
the fine-scale mesh is mapped to the coarse-scale mesh at
every optimization step. As an example of mapping, a 5x5
portion of fine scale elements 511 are shown in FIG. 5 to be
mapped to a single coarse-scale element 512. This mapping
process can be repeated to map the entire array of fine-scale
mesh elements of the topology to respective coarse scale
elements. The mapping is defined in the following manner.
For a given coarse-scale finite element 512 with nodes 531,
532, 533, 534 and a total of n, integration Gauss points 521,
522, 523, 524, the coarse-scale finite element 512 is divided
into a total of ng sub-regions and each sub-region is asso-
ciated with one of its integration Gauss points 521, 522, 523,
524. Herein, for a 2D analysis, n;=4 as shown in FIG. 5, and
for a 3D analysis, n;=8. In addition, for coarse-scale finite
element k, each sub-region ij G=1,...,4in2D,orj=1,.
.., 81n3D) is associated with the jth Gauss point. Under this
convention, the mapped stiffness at the jth integration point
of coarse-scale element k, which is denoted as EjC’k, is

Mar. 24, 2022

computed as the weighted average of the interpolated stift-
ness of all the fine-scale elements that fall within in the
sub-region ij, namely,

1 ok 14)
Ck §
E;" = - & w; ' E;,
Z '
e

where E, is the interpolated stiffness of element i in the
fine-scale mesh, and w,< is the weight assigned to E, in
sub-region ij. If element i in the fine-scale mesh falls
completely within ij, then the weight is taken to be w,% =1.
Otherwise, if element i falls into a total of n sub-regions, the
weight is taken to be

S

w; T =

==

for all sub-regions ij. With the stiffness mapping and
assuming that all coarse-scale elements are identical, the
global stiffness matrix K< on the coarse-scale mesh is
computed as:

oo 1s)
>TEFBS) DoBSJS |,
1

k= J]3

k

where D, is the constitutive matrix of the solid phase, and
B,” and J° are the strain-displacement matrix and the Jaco-
bian of iso-parametric mapping at the jth integration point of
a coarse-scale element, respectively. The nodal displacement
vector u€ of the coarse-scale mesh can then be obtained by
solving the state equation as

uC=(KO I, (16)

where f is the applied force vector on the coarse-scale
mesh.

[0044] Next described are embodiments for integration of
the machine learning module and two-scale topology opti-
mization. To promote a more scalable framework, a local-
ized training strategy is applied for the machine learning-
based model which capitalizes the main features of the
two-scale topology optimization formulation. Instead of
treating each global design as an individual training sample,
each element is viewed in the coarse-scale mesh together
with its enclosed fine-scale elements as an independent
training instance.

[0045] FIG. 6 illustrates a 2D representation of two mesh
scales for a cantilever beam design problem. The localizing
training strategy provides advantages compared against a
global strategy. The global design of a cantilever beam
design consisting of a mesh of fine-scale elements 610 is
decomposed into local instances 620. Localized instances
are arranged from first coarse-scale instance 621 to last
instance 629, and collected as training instances 630, with
instance 631 corresponding to element 621, and training
instance 639 corresponding to localized instance 629. By
localizing the training input data, the total number and
diversity of the training samples for the fully-connected
DNN is significantly increased. From a machine learning

