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A B S T R A C T

From a kinematics perspective, a Kresling origami cell couples axial displacement (contrac-
tion/expansion) with twist, leading to non-rigid origami behavior. From an energy landscape
perspective, the selection of the Kresling origami geometry, together with its fabrication process
and material, lead to energy envelopes allowing single or multiple stable states. In this context,
this paper explores the Kresling origami mechanics through mathematical modeling integrated
with experimental testing. On the theoretical mechanics front, we present a comprehensive
model incorporating the representative geometrical parameters of the Kresling origami cell
into the corresponding energy function in order to capture its essential mechanical behavior.
On the experimental mechanics front, we create two fixtures that demonstrate the ability to
control axial displacement (contraction/expansion) and twist independently, without imposing
any constraints on the chiral arrangement of individual cells within the Kresling origami array
(composed of multiple cells). Finally, we show the coexistence of multiple mechanical and
morphological configurations within the same Kresling array by programming its loading modes,
i.e., compression or twist. The fundamental nature of this work makes it applicable to several
fields of engineering, including soft robotics and mechanical computing.

. Introduction

We present a comprehensive theoretical analysis of the Kresling (2008) origami, incorporating its representative geometric
arameters into the energy expression, thereby shedding light on how they influence the multistability behavior of the origami
ssembly. In addition, we introduce two novel experimental fixtures tailored for conducting either applied twist with free axial
isplacement or applied axial displacement with free twist. The uniqueness of the experimental apparatus lies in its ability to
ndependently control axial displacement (contraction/expansion) and torsional motion. This feature allows testing of Kresling arrays
onsisting of either odd or even number of cells, without imposing constraints on the chiral arrangement of individual cells within
he array, as illustrated by Fig. 1. By exploring local actuation of the Kresling array, we show coexistence of multiple mechanical
nd morphological configurations.

The remainder of this paper is organized as follows. In Section 2, we provide the motivation behind this paper by summarizing
elated work in both theory and experiments. Section 3 formulates the mechanics problem, considering geometry, mechanical
roperties, and their respective roles in the mechanical behavior of Kresling origami via parametric analysis. Section 4 describes the
anufacturing method adopted to create the origami cells and provides a detailed description of the two experimental setups created

or the experiments: the free-rotating fixture for compression experiments, and the free-translating fixture for torsional experiments.
n Section 5, we discuss the results obtained with single Kresling cells and 2-cell Kresling arrays. Section 6 provides concluding
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Fig. 1. Evolution of mechanical testing setups for Kresling origami cell coupling axial displacement (contraction/expansion) and twist. Top left: standard setup
consisting of applied twist with prescribed axial displacement; Bottom left: standard setup consisting of applied axial displacement with prescribed twist; Top
right: applied twist with free axial displacement; and Bottom right: applied axial displacement with free twist. Notice that the experimental setups (standard)
on the left-hand-side are conducted with an even number of cells, while the experimental setups (novel) on the right-hand-side do not place any restriction on
the number of cells, i.e. even or odd. The two novel experimental setups are explained later in the article.

remarks. Six Appendices supplement the paper. Appendix A presents further theoretical details about the formulation employed
in this work, including the energy approach discussed in Section 3. Appendix B provides details of the Kresling cell fabrication.
Appendix C investigates the effects of loading rate for the experimental setups. Appendix D reports auxiliary experiments conducted
to estimate the mechanical properties of the composite material used for sample manufacturing and to estimate the rotational
stiffness of the creases. Appendix E discusses the buckling effects observed in the torsional experiments of the 2-cell array with
opposite chirality. Finally, Appendix F presents the nomenclature.

2. Motivation and scope of work

The findings of this study are applicable to several fields of engineering, including mechanical computing (Yasuda et al., 2021).
They pave the way for the development of mechanical memory systems capable of encoding information. By exploring the sequence
of mechanical loading (axial displacement or twist), we enable the coexistence of multiple mechanical/morphological states within
the same structure, as illustrated by Fig. 2. Further exploration of this loading sequence-dependent phenomenon may lead to the
creation of multifunctional structural and material systems with embedded mechanical computing systems.

2.1. Theoretical considerations

The theoretical analysis of Kresling origami structures is generally based on simplified models, as summarized by Fig. 3. For
instance, one of those approaches considers a truss comprised of bar elements only. The stretching of the bar elements estimates
the folding kinematics and predicts the mechanical behavior of the Kresling structure. The truss-based modeling assumes that the
length of edges on the top and bottom polygons remains constant, while truss members along the mountain and valley creases
deform during deployment. Cai et al. (2015) proposed a model considering that the lengths of mountain creases are constant while
the length of valley creases can change. Conversely, Bhovad et al. (2019) assumed constant valley creases and variable mountain
creases. However, these assumptions do not fully capture the folding behavior of the Kresling origami. Yasuda et al. (2017) built an
elastic truss prototype and modeled mountain and valley creases as linear springs. This approach has been adopted by most of the
2
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Fig. 2. Mechanical computing based on 2-cell Kresling array using standard and novel testing setups. All the data reported in the plots are collected from the
respective experiments.

studies assuming stretchable mountain and valley creases, e.g. Masana and Daqaq (2019), Masana et al. (2020), Lu et al. (2022), Li
et al. (2020), and Zhang et al. (2021b).

Nevertheless, both experimental and simulation studies reveal that the folding of panels also influences the mechanical behavior
of Kresling structures (Liu and Paulino, 2017; Huang et al., 2022a). This suggests the introduction of the dihedral angles between
3
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Fig. 3. Summary of previous work on theoretical models, which are based in one or more of the following parameters: 𝑏, 𝑐, 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 with geometric interpretation
provided by Fig. 4. For parameter 𝑏, see Bhovad et al. (2019); for parameter 𝑐, see Cai et al. (2015); for parameters 𝑏, 𝑐, see Yasuda et al. (2017), Masana
nd Daqaq (2019), Masana et al. (2020), Lu et al. (2022), Li et al. (2020) and Zhang et al. (2021b); for parameters 𝛿𝑎 , 𝛿𝑐 , see Pagano et al. (2016, 2017); for

parameters 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 , see Huang et al. (2022a,b); for parameters 𝑏, 𝑐, 𝛿𝑎, see Yasuda et al. (2019); for parameters 𝑏, 𝛿𝑎 , 𝛿𝑐 , see Nayakanti et al. (2018) and Zhang
et al. (2021a); for parameters 𝑏, 𝑐, 𝛿𝑎 , 𝛿𝑏, see Jin et al. (2022). Our work involves all the five parameters 𝑏, 𝑐, 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 .

panels as geometrical parameters to complement the theoretical model. For instance, Pagano et al. (2016) and Pagano et al. (2017)
proposed a theoretical model involving two dihedral angles: one between the top polygon and the side triangular panel, and the
other between two side triangular panels along a valley crease. However, Huang et al. (2022b) suggested that a Kresling structure
without any cutout creases should incorporate all three dihedral angles.

Motivated by our desire to improve upon the aforementioned models and to provide the most simplified model that captures the
essence of Kresling mechanics, we present a 5-parameter model that incorporates its representative variable geometric parameters,
i.e., two lengths of creases along mountain folds and valley folds, respectively; two dihedral angles between side triangular panels
along mountain creases and valley creases, respectively; and one dihedral angle between surface polygons and side triangular panels.
The stiffness coefficients of these geometric parameters, embedded in the energy function, can be independently tuned, enabling
the theoretical model to accommodate the analysis for various applications.1

2.2. Experimental considerations

The deformation of a Kresling cell couples axial contraction/expansion and twisting. These unique kinematics challenge standard
experimental fixtures capable of a single-degree-of-freedom deformation control. To resolve this issue, Wilson et al. (2013) proposed
a compression/tension test on a pair of Kresling cells with opposite chirality, eliminating the twisting degree of freedom on the
boundaries.

This experimental work was then extended to Kresling arrays built by multiple pairs of chiral cells (Jules et al., 2022). However,
this approach is restricted to an even number of cells and thus cannot capture the folding/deploying behavior of a single Kresling
cell. Thus, a new experimental setup, incorporating a rotating base on the loading plate, was introduced to conduct the compression
experiment on a Kresling array (Cleveland et al., 2016). This fixture, decoupling two deformation modes, has been used by various
researchers investigating Kresling origami, e.g., Nayakanti et al. (2018), Yasuda et al. (2019), Bhovad et al. (2019), Masana and
Daqaq (2019), Masana et al. (2020), Zhang et al. (2021a), Huang et al. (2022a) and Yang et al. (2023). However, none of the
previous works involved a torque sensor to verify zero torsion under compression loading, which is addressed in the present paper.

There is a dearth of information on how to design a torsion experimental setup that allows free axial deformation. The mechanical
testing setups developed in this study address the challenge of decoupling axial contraction/expansion and twisting of Kresling cells
in either compression or torsional tests, enabling the simultaneous collection of force and torque data. Verification was achieved
through the nearly zero torque and force curves observed in compression and torsional experiments, respectively. These novel setups
allow conducting compression and torsion tests on a generic Kresling array with cells of arbitrary chirality.

3. Formulation of the Kresling mechanics problem

The Kresling cell consisting of two identical parallel 𝑛-sided equilateral polygons connected by 2𝑛 repeating triangular panels
(𝑛 = 6 in Fig. 4) can be described by three intrinsic parameters, ℎfolded (the height in the folded configuration), 𝜃0 (the relative angle
between the top and bottom polygons in the initial configuration, i.e., deployed state), and 𝑟 (the radius of the circumscribed
circle of polygon). Here, we choose the parameter ℎfolded = 0. Thus, the height in the initial configuration is calculated by

1 Instead of using detailed finite element model with shell elements, which is very time consuming, one could use the present mode which is simple and
4

ffective to gain insights.
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Fig. 4. Geometric configuration of the Kresling origami. The first row shows the top view, the second row shows a perspective view, and the third row shows
pertinent details. (A) Schematics of the deployed configuration with geometric parameters and vertices description. (B) Schematics of the folded configuration.
(C) The inset triangles illustrate the twisting angle 𝜃0, and three dihedral angles 𝛿𝑎0, 𝛿𝑏0, 𝛿𝑐0, respectively. The color scheme among figures is consistent (on the
first two rows, mountains are red and valleys are green).

ℎ0 = 𝑟
√

2(cos 𝜃0 − cos 𝜃max), where 𝜃max = 𝜋 − (2𝜋∕𝑛) − 𝜃0 is the relative angle between polygons in the folded configuration (Lang,
2017). The initial lengths, 𝑎0, 𝑏0, and 𝑐0, and dihedral angles, 𝛿𝑎0, 𝛿𝑏0, and 𝛿𝑐0, can be described by 𝑛, ℎ0, 𝜃0, and 𝑟 (details are shown
in Appendix A.1). Next, we investigate the Kresling geometry in detail, derive its potential energy, and conduct a parametric study
to understand its behavior consisting of axial loading with free rotation, and torsional loading with free translation.

3.1. Geometrical interpretation

Assuming that the polygons do not deform, i.e., 𝑎 = 𝑎0 in Fig. 4A and B, we can describe the three lengths, 𝑎, 𝑏(𝑢, 𝜑), and 𝑐(𝑢, 𝜑),
and the three dihedral angles, 𝛿 (𝑢, 𝜑), 𝛿 (𝑢, 𝜑), and 𝛿 (𝑢, 𝜑) in a folding configuration (Fig. 4B) along with two variables, 𝑢 and 𝜑 (see
5
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detailed derivations in Appendix A.2). Here, 𝑢 is the distance between points 𝐵2 and 𝐵′
2 in 𝑧-direction, and 𝜑 denotes the twisting

angle of the top polygon (i.e., from point 𝐵2 to point 𝐵′
2) with the bottom polygon fixed. Based on this framework, we derive the

following relationships:

𝑎 = 2𝑟 sin (𝜋∕𝑛) (1)

𝑏(𝑢, 𝜑) =
√

(ℎ0 − 𝑢)2 + 4𝑟2 sin2 (𝜑∕2 + 𝜃0∕2) (2)

𝑐(𝑢, 𝜑) =
√

(ℎ0 − 𝑢)2 + 4𝑟2 sin2 (𝜑∕2 + 𝜃0∕2 + 𝜋∕𝑛) (3)

𝛿𝑎(𝑢, 𝜑) = arctan
(ℎ0 − 𝑢)

2𝑟 sin (𝜑∕2 + 𝜃0∕2 + 𝜋∕𝑛) sin(𝜑∕2 + 𝜃0∕2)
(4)

𝛿𝑏(𝑢, 𝜑) = 𝜋 − arccos
(ℎ0 − 𝑢)2 cos (𝜑 + 𝜃0 + 2𝜋∕𝑛) − 𝑟2[cos (𝜑 + 𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2

(ℎ0 − 𝑢)2 + 𝑟2[cos (𝜑 + 𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2
(5)

𝛿𝑐 (𝑢, 𝜑) = 𝜋 − arccos
(ℎ0 − 𝑢)2 cos (𝜑 + 𝜃0) − 𝑟2[cos (𝜑 + 𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2

(ℎ0 − 𝑢)2 + 𝑟2[cos (𝜑 + 𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2
(6)

3.2. Mechanical behavior

Inspired by the bar-and-hinge-model for the Kresling origami cells (Liu and Paulino, 2017), we discretize creases with bar
elements and rotational springs. The total elastic energy, 𝑈 , is a combination of the elastic energy stored in bar elements, 𝑈𝑏𝑎𝑟,
and that provided by rotational springs, 𝑈𝑟𝑜𝑡. Thus, 𝑈 (𝑢, 𝜑) = 𝑈𝑏𝑎𝑟(𝑢, 𝜑) + 𝑈𝑟𝑜𝑡(𝑢, 𝜑). For the Kresling cell in Fig. 4, we have:

𝑈𝑏𝑎𝑟(𝑢, 𝜑) =
1
2
𝑛𝑏𝑘𝑠,𝑏(𝑏(𝑢, 𝜑) − 𝑏0)2 +

1
2
𝑛𝑐𝑘𝑠,𝑐 (𝑐(𝑢, 𝜑) − 𝑐0)2 (7)

𝑈𝑟𝑜𝑡(𝑢, 𝜑) =
1
2
𝑛𝑎𝑘𝑟,𝑎(𝛿𝑎(𝑢, 𝜑) − 𝛿𝑎0)2 +

1
2
𝑛𝑏𝑘𝑟,𝑏(𝛿𝑏(𝑢, 𝜑) − 𝛿𝑏0)2 +

1
2
𝑛𝑐𝑘𝑟,𝑐 (𝛿𝑐 (𝑢, 𝜑) − 𝛿𝑐0)2 (8)

where all the geometric parameters are determined by Eqs. (A.1)–(A.6) and Eqs. (1)–(6). Notice that 𝑛𝑏 is the number of mountain
creases, 𝑛𝑐 is the number of valley creases, 𝑛𝑎 is the number of edges of the polygons (top and bottom surfaces), 𝑘𝑠,𝑏 is the stretching
stiffness of mountain creases, 𝑘𝑠,𝑐 is the stretching stiffness of valley creases, 𝑘𝑟,𝑎 is the folding stiffness between the side panels
and polygons (top and bottom surfaces), 𝑘𝑟,𝑏 is the folding stiffness between two side panels connected by a mountain crease, and
𝑘𝑟,𝑐 is the folding stiffness between two side panels connected by a valley crease. Thus, the total elastic energy of a Kresling cell is
expressed as:

𝑈 (𝑢, 𝜑) = 1
2
𝑛𝑏𝑘𝑠,𝑏(𝑏(𝑢, 𝜑) − 𝑏0)2 +

1
2
𝑛𝑐𝑘𝑠,𝑐 (𝑐(𝑢, 𝜑) − 𝑐0)2

+ 1
2
𝑛𝑎𝑘𝑟,𝑎(𝛿𝑎(𝑢, 𝜑) − 𝛿𝑎0)2 +

1
2
𝑛𝑏𝑘𝑟,𝑏(𝛿𝑏(𝑢, 𝜑) − 𝛿𝑏0)2 +

1
2
𝑛𝑐𝑘𝑟,𝑐 (𝛿𝑐 (𝑢, 𝜑) − 𝛿𝑐0)2

(9)

Previous investigations revealed that the Kresling cell can be controlled by both axial force, 𝐹 , and torque, 𝑇 (Yasuda et al.,
2017, 2019). Thus, the work done on the cell is calculated by 𝑊 (𝑢, 𝜑) = ∫ 𝐹 (𝑢, 𝜑)𝑑𝑢 + ∫ 𝑇 (𝑢, 𝜑)𝑑𝜑. The total potential energy of
he Kresling cell, 𝛱 , can be expressed using the total elastic energy, 𝑈 , and work, 𝑊 , i.e., 𝛱(𝑢, 𝜑) = 𝑈 (𝑢, 𝜑) −𝑊 (𝑢, 𝜑). Substituting
q. (9) into the potential energy expression, we obtain:

𝛱(𝑢, 𝜑) = 1
2
𝑛𝑏𝑘𝑠,𝑏(𝑏(𝑢, 𝜑) − 𝑏0)2 +

1
2
𝑛𝑐𝑘𝑠,𝑐 (𝑐(𝑢, 𝜑) − 𝑐0)2 +

1
2
𝑛𝑎𝑘𝑟,𝑎(𝛿𝑎(𝑢, 𝜑) − 𝛿𝑎0)2

+ 1
2
𝑛𝑏𝑘𝑟,𝑏(𝛿𝑏(𝑢, 𝜑) − 𝛿𝑏0)2 +

1
2
𝑛𝑐𝑘𝑟,𝑐 (𝛿𝑐 (𝑢, 𝜑) − 𝛿𝑐0)2 − ∫ 𝐹 (𝑢, 𝜑)𝑑𝑢 − ∫ 𝑇 (𝑢, 𝜑)𝑑𝜑

(10)

otice that Eq. (10) includes two independent variables, 𝑢 and 𝜑. Based on the principle of minimum total potential energy,
equilibrium is achieved when:

𝜕𝛱∕𝜕𝑢 = 0, 𝜕𝛱∕𝜕𝜑 = 0 (11)

Substituting Eq. (10) into Eq. (11), we calculate the axial force, 𝐹 , and the torque, 𝑇 , as follows:

𝐹 (𝑢, 𝜑) = 𝜕𝑈 (𝑢, 𝜑)∕𝜕𝑢

= −(ℎ0 − 𝑢)
𝑛𝑏𝑘𝑠,𝑏(𝑏(𝑢, 𝜑) − 𝑏0)

𝑏(𝑢, 𝜑)
− (ℎ0 − 𝑢)

𝑛𝑐𝑘𝑠,𝑐 (𝑐(𝑢, 𝜑) − 𝑐0)
𝑐(𝑢, 𝜑)

−
𝑛𝑎𝑘𝑟,𝑎(𝛿𝑎(𝑢, 𝜑) − 𝛿𝑎0)

2𝑟(tan2 𝛿𝑎(𝑢, 𝜑) + 1) sin (𝜑∕2 + 𝜃0∕2 + 𝜋∕𝑛) sin (𝜑∕2 + 𝜃0∕2)

−
2𝑛𝑏𝑘𝑟,𝑏(𝛿𝑏(𝑢, 𝜑) − 𝛿𝑏0)(ℎ0 − 𝑢)[cos (𝜑 + 𝜃0 + 2𝜋∕𝑛) + 1]𝑒1(𝜑)

√

1 − cos2 (𝜋 − 𝛿𝑏(𝑢, 𝜑))[(ℎ0 − 𝑢)2 + 𝑒1(𝜑)]2

−
2𝑛𝑐𝑘𝑟,𝑐 (𝛿𝑐 (𝑢, 𝜑) − 𝛿𝑐0)(ℎ0 − 𝑢)[cos (𝜑 + 𝜃0) + 1]𝑒1(𝜑)

√

(12)
6

1 − cos2 (𝜋 − 𝛿𝑐 (𝑢, 𝜑))[(ℎ0 − 𝑢)2 + 𝑒1(𝜑)]2
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T

3

f

𝑇 (𝑢, 𝜑) = 𝜕𝑈 (𝑢, 𝜑)∕𝜕𝜑

=
𝑛𝑏𝑘𝑠,𝑏(𝑏(𝑢, 𝜑) − 𝑏0)

𝑏(𝑢, 𝜑)
𝑟2 sin (𝜑 + 𝜃0) +

𝑛𝑐𝑘𝑠,𝑐 (𝑐(𝑢, 𝜑) − 𝑐0)
𝑐(𝑢, 𝜑)

𝑟2 sin (𝜑 + 𝜃0 + 2𝜋∕𝑛)

−
𝑛𝑎𝑘𝑟,𝑎(𝛿𝑎(𝑢, 𝜑) − 𝛿𝑎0)(ℎ0 − 𝑢) sin (𝜑 + 𝜃0 + 𝜋∕𝑛)

4𝑟(tan2 𝛿𝑎(𝑢, 𝜑) + 1) sin2 (𝜑∕2 + 𝜃0∕2 + 𝜋∕𝑛) sin2 (𝜑∕2 + 𝜃0∕2)

−
𝑛𝑏𝑘𝑟,𝑏(𝛿𝑏(𝑢, 𝜑) − 𝛿𝑏0)𝑔𝑏(𝑢, 𝜑)

√

1 − cos2 (𝜋 − 𝛿𝑏(𝑢, 𝜑))[(ℎ0 − 𝑢)2 + 𝑒1(𝜑)]2

−
𝑛𝑐𝑘𝑟,𝑐 (𝛿𝑐 (𝑢, 𝜑) − 𝛿𝑐0)𝑔𝑐 (𝑢, 𝜑)

√

1 − cos2 (𝜋 − 𝛿𝑐 (𝑢, 𝜑))[(ℎ0 − 𝑢)2 + 𝑒1(𝜑)]2

(13)

where

𝑔𝑏(𝑢, 𝜑) = (ℎ0 − 𝑢)2 sin (𝜑 + 𝜃0 + 2𝜋∕𝑛)[(ℎ0 − 𝑢)2 + 𝑒1(𝜑)]

+ (ℎ0 − 𝑢)2[cos (𝜑 + 𝜃0 + 2𝜋∕𝑛) + 1]𝑒′1(𝜑)

𝑔𝑐 (𝑢, 𝜑) = (ℎ0 − 𝑢)2 sin (𝜑 + 𝜃0)[(ℎ0 − 𝑢)2 + 𝑒1(𝜑)] + (ℎ0 − 𝑢)2[cos (𝜑 + 𝜃0) + 1]𝑒′1(𝜑)

𝑒1(𝜑) = 𝑟2[cos (𝜑 + 𝜃0 + 𝜋∕𝑛) − cos𝜋∕𝑛]2

𝑒′1(𝜑) = −𝑟2 sin (2𝜑 + 2𝜃0 + 2𝜋∕𝑛) + 2𝑟2 cos (𝜋∕𝑛) sin (𝜑 + 𝜃0 + 𝜋∕𝑛)

he prime in 𝑒′1(𝜑) denotes derivative.

.3. Targeted parametric study

The stretching stiffness of the creases and the folding stiffness between panels contribute greatly to the total elastic energy
unction in Eq. (9). The stiffness terms in Eq. (9) can be defined using the following expressions.

𝑘𝑠,𝑏 = 𝑘𝑠∕𝑏0, 𝑘𝑠,𝑐 = 𝑘𝑠∕𝑐0 (14)

𝑘𝑟,𝑎 = 𝑘𝑟𝑎0, 𝑘𝑟,𝑏 = 𝑘𝑟𝑏0, 𝑘𝑟,𝑐 = 𝑘𝑟𝑐0 (15)

where 𝑘𝑠, measured by (N mm−1)mm, denotes the normalized stretching stiffness of the creases, and 𝑘𝑟, measured by N mm(rad mm)−1,
denotes the rotational stiffness of the crease per unit length. For a constant 𝑘𝑠, e.g., 𝑘𝑠 = 50 (N mm−1)mm, we vary 𝑘𝑟 from 0 to
1.25 × 10−2 N mm(rad mm)−1, and study how the stiffness (𝑘𝑟) influences the monostable and bistable behaviors under two types of
loading conditions, i.e, axial loading with free-rotation, and torsional loading with free-translation. We choose 𝑛 = 6, 𝑟 = 30 mm,
and 𝜃0 = 30◦ as the initial geometry parameters – see Fig. 5.

3.3.1. Axial loading with free-rotation
Here, the cell deforms in the axial direction and rotates freely. Thus, the torque defined in Eq. (13) is zero. We have:

𝜕𝑈 (𝑢, 𝜑)∕𝜕𝜑 = 0 (16)

For a given stiffness 𝑘𝑟, we can obtain the relationship, 𝜑 = 𝑓𝐹 (𝑢), by solving Eq. (16) – see details in Appendix A.3. Based on this
relationship, we can calculate crease lengths, 𝑏(𝑢, 𝜑) and 𝑐(𝑢, 𝜑), and dihedral angles, 𝛿𝑎(𝑢, 𝜑), 𝛿𝑏(𝑢, 𝜑), and 𝛿𝑐 (𝑢, 𝜑), using Eqs. (2)–(6).
Then we can calculate the total elastic energy, 𝑈 (𝑢, 𝜑), and axial force, 𝐹 (𝑢, 𝜑), using Eqs. (9) and (12), respectively.

Based on this theoretical investigation, the Kresling cell has two zero-energy kinematic stable configurations when 𝑘𝑟 is zero
(Fig. 5 A(left)). In this case, panel stretching, represented by the deformation of mountain and valley creases (Fig. 5A(middle)),
dominates the stored energy. As 𝑘𝑟 increases, the position of the second stable state changes. This is due to the monotonically in-
creasing energy contributed by panel folding. Fig. 5A(right) indicates that the dihedral angles between panels change monotonically.
The stable states position can be obtained using the following stationary condition:

𝜕𝑈∕𝜕𝑢 = 0, 𝜕2𝑈∕𝜕𝑢2 > 0 (17)

The detailed solution scheme solving Eq. (17) is listed in Appendix A.3, and results are summarized in Table 1. Note that Eq. (17)
has a single root when 𝑘𝑟 > 1.25 × 10−2 N mm(rad mm)−1. This indicates that the Kresling cell becomes monostable.

3.3.2. Torsional loading with free-translation
In this case, the rotational degree of freedom (DOF) is under control, but the vertical displacement DOF is free. Thus, the axial

force in Eq. (12) is zero and we have:

𝜕𝑈 (𝑢, 𝜑)∕𝜕𝑢 = 0 (18)

By solving Eq. (18), we derive the relationship, 𝑢 = 𝑓𝑇 (𝜑) (see details in Appendix A.3). Then we can compute crease lengths, 𝑏(𝑢, 𝜑)
and 𝑐(𝑢, 𝜑), and dihedral angles, 𝛿𝑎(𝑢, 𝜑), 𝛿𝑏(𝑢, 𝜑), and 𝛿𝑐 (𝑢, 𝜑), by using Eqs. (2)–(6), and the total elastic energy, 𝑈 (𝑢, 𝜑), and the
7

torque, 𝑇 (𝑢, 𝜑), using Eqs. (9) and (13).
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Fig. 5. Mechanics of the Kresling cell considering two loading conditions, i.e., axial compression (free-rotation) and torsion (free-translation). (A) Axial
ompression loading condition. The stored strain energy of the Kresling cell versus the vertical displacement of any vertices on the top hexagonal plane (left);
hange of lengths for the mountain creases versus vertical displacement (middle); three dihedral angles versus the vertical displacement (right). The strain energy
𝑈∕𝑘𝑠𝑟) and displacement (𝑢∕𝑟) are normalized in the parametric analysis. Black dots indicate positions of the 2nd stable states. Multiple dashed and shaded

lines represent the solution considering a range of stiffness 𝑘𝑟 from 0 to 1.25 × 10−2 N mm(rad mm)−1. The line colors, i.e., black, red, and green, are consistent
with the color code used for edges and creases in Fig. 4. (B) Torsional loading condition. The strain energy versus the twisting angle of the top hexagonal plane
(left); change of lengths for the mountain and valley creases versus the twisting angle (middle); three dihedral angles versus the vertical displacement (right).

Table 1
Position of the 2nd stable state considering a range of stiffness 𝑘𝑟.
𝑘𝑟 (N mm(rad mm)−1) 𝑈∕(𝑘𝑠𝑟) 𝑢∕𝑟 𝜑 (deg)

1.25 × 10−2 8.5 × 10−3 0.6 44
5 × 10−3 4.1 × 10−3 0.9 55
0 0 1.3 60

As shown in Fig. 5B(left), the trend of the elastic energy landscape is similar to that observed in the axial compression loading
ondition. However, the changes of geometric parameters in the torsion loading condition exhibit distinct behavior compared to
hose in the compression loading condition. As illustrated in Fig. 5B(middle), the mountain and valley creases do not return to
heir initial lengths unless 𝑘𝑟 is zero. For a case with non-zero 𝑘𝑟, an imposed twist angle leads to a non-zero height in the folded

state. This implies that the Kresling cell under torsion loading condition can only achieve a completely folded configuration with
zero height when 𝑘𝑟 is zero. Furthermore, we can calculate the position of stable states under a torsion loading condition using the
following conditions:

𝜕𝑈∕𝜕𝜑 = 0, 𝜕2𝑈∕𝜕𝜑2 > 0 (19)

The solution of Eq. (19) satisfies the conditions in Eq. (17) as expected. This observation justifies that the positions of stable states
for standard Kresling origami are independent of loading conditions.

3.4. Comparative analysis

We observe that the number of parameters influences the shape of the Kresling origami energy landscape. Thus, we compare
the 5-parameter energy analysis with the 4-, 3-, or 2-parameter analyses in Fig. 6. If only two parameters (i.e., lengths of mountain
and valley creases) are used, the stored energy at the 2nd stable state will always be zero. When we add dihedral angles (along
creases) as additional parameters into the formulation, the location of the 2nd stable state is allowed to vary, including a non-zero
ase energy. Furthermore, the 5-parameter model provides a more convenient means to program the magnitude of the base energy.
8
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Fig. 6. Results calculated by 5-parameter (𝑏, 𝑐, 𝛿𝑎, 𝛿𝑏, 𝛿𝑐 ), 4-parameter (𝑏, 𝑐, 𝛿𝑏, 𝛿𝑐 ), 3-parameter (𝑏, 𝑐, 𝛿𝑐 ), and 2-parameter (𝑏, 𝑐) analyses. (A) Compression
oading condition. (B) Torsional loading condition. The geometric parameters are based on the 𝜑max = 60◦ cell. The stiffness parameters are from the experiments
n Appendix D. The blue dot represents the 1st stable state, and the black dots denote the 2nd stable state.

Fig. 7. Comparison between the original Kresling cell and the cell with reinforcing or removing specific panels. Schematic of specimens with (A) cutting side
panels or (B) reinforcing side panels. Theoretical results of (C) axial loading with free-rotation and (D) torsional loading with free-translation. The green dot
represents the 1st stable state, and the black dots denote the 2nd stable state.

.5. Effects of removing/reinforcing side panels

Based on the 5-parameter formulation, we further analyze the effect of removing/reinforcing specific panels. Such operations
ead to shape changes on the energy landscape. Moreover, adding reinforced panels varies the location of the 2nd stable state, while

removing panels has no influence on the location of the 2nd stable state.
Fig. 7A and B illustrate the effect of cutting/reinforcing panels on two opposite sides (to preserve symmetry). In the case of

removing panels, the number of creases reduces in the formulation, leading to shape changes on the energy landscape. Since the
stretching stiffness 𝑘𝑠 and the rotational stiffness 𝑘𝑟 are not changing, the location of the 2nd stable state remains the same. In the
case of reinforcing panels, the thickness (𝑡) is doubled at the reinforced area. Since 𝑘𝑠 = 𝐸𝐴 = 𝐸𝜋(𝑡∕2)2, then it scales with 𝑡2. The
rotational stiffness 𝑘𝑟 scales with the flexural rigidity of the panel, 𝐸𝑡3∕12(1 − 𝑣2), i.e., the stiffness 𝑘𝑟 scales with 𝑡3. Thus, 𝑘𝑟 and
𝑠 vary differently at the reinforced area depending on the thickness 𝑡, which leads to changes on both the energy landscape and
he location of the 2nd stable state (Fig. 7C and D).

. Fabrication and experiments

To fabricate the experimental Kresling specimens, we used 0.4 mm-thick composite material for all panels. The composite
9

aterial consists of two layers of paper on the top and bottom, with a central layer of 3M adhesive transfer tape. To create the
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Fig. 8. Details of the setup designed for conducting compression experiments on Kresling origami, equipped with a free-rotating fixture. (A) Schematics and (B)
a photograph of the actual setup mounted on an Instron loading frame machine. (C) Snapshots extracted from the record of the experiment at different times
illustrating the working principles of the setup. Compression on the Kresling array is achieved by imposing the axial displacement 𝑢, indicated by white arrows,
using a loading frame machine. The fixture enables free rotation, facilitating the natural twisting of the Kresling, as indicated by the red arrows.

Table 2
Parameters of experimental specimens.
𝜑max (deg) 𝑛 𝑟 (mm) 𝜃0 (deg) ℎ0 (mm)

60 6 30 30 39.48
90 6 30 15 46.95

creases, we removed the top and bottom layers of paper from the composite material using the laser cutter and were left with the
central layer of 0.17 mm-thick tape. In addition, we made cuts along the mountain creases to enhance the folding process. More
detailed information can be found in Appendix B.

As shown in Figs. 8 and 9, special fixtures were 3D printed and prepared for installation in the Instron machine. These fixtures
have an arrangement of magnets that connect to 3D-printed thin polygonal plates with matching magnets. These polygonal plates
are glued to the top and bottom of the Kresling array (for simplicity, the aforementioned figures display only one Kresling unit)
that will be tested. The patterned material sheet was initially assembled to the folded configuration (ℎ = ℎfolded = 0) of the Kresling
cell. The folded Kresling cell is then deployed using the Instron machine. In this investigation, our experimental studies involved
two types of Kresling cells defined by the parameter 𝜑max. The specific parameters of the experimental specimens are outlined in
Table 2. Further details are provided below.
10
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Fig. 9. Details of the setup designed for conducting torsional experiments on Kresling origami, equipped with a free-translating fixture. (A) Schematics and (B)
a photograph of the actual setup mounted on an Instron loading frame machine. (C) Snapshots extracted from the record of the experiment at different times
illustrating the working principles of the setup. Twisting in the Kresling array is accomplished by applying a rotation 𝜑, as indicated by yellow arrows, using
a loading frame machine. The fixture is connected to a linear slide system that enables unrestricted translation, allowing the Kresling array to undergo axial
folding without constraints, as indicated by the red arrows.

4.1. Experimental setups

The intrinsic kinematics of the Kresling cell couples axial contraction/expansion and twisting. To investigate this phenomenon,
we have designed two distinct experimental configurations that decouple those deformation modes. Thus, the experimental setups
allow either compression or torsional tests to be conducted on individual Kresling cells as well as generic Kresling arrays. The arrays
can be composed of either an odd number of cells, or an even number of cells, without any constraint on the chiral arrangement of
any cell or group of cells. Both setups comprise two fixtures that connect the top and bottom surfaces of the Kresling origami to the
Instron loading frame machine (Model 68SC-5 Single Column Testing System), via small shafts, as illustrated by Fig. 8. Both fixtures
are equipped with multiple miniaturized magnets, ensuring precise and secure connections between the Kresling and the loading
frame, as in Figs. 8 and 9. In both setups, the bottom fixture is the same and effectively restrains both rotational and axial movements,
preventing any undesired rigid motion of the Kresling samples during the tests. Figs. 8C and 9C show the snapshots extracted from
the movies recorded during the experiments. With the addition of these snapshots, we aim to enhance the clarity of the working
principles of the setups. During the tests, we record the axial force and twisting moment using a force/torque sensor (Biaxial Load
11
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Cell ±445 N, ±5.65 N m). Additionally, the axial displacement is monitored through a displacement transducer mounted within the
oading frame, which measures the vertical movement of the top cantilevered cross-head of the loading frame.

.1.1. Free-rotating fixture for compression experiments
Within this setup configuration, the top fixture allows for free rotation, enabling the natural twisting of the Kresling structure

hroughout the folding and unfolding process induced by compression or tension loading. The free rotation capability of the top
ixture is achieved through the incorporation of a ball bearing (SKF 608 SKF 8 × 22 × 7) into the top plate, as shown in Fig. 8.

.1.2. Free-translating fixture for torsional experiments
We created a dedicated fixture to enable twist of the Kresling structure while allowing it to undergo axial folding and unfolding

ithout constraint. This capability was achieved through the utilization of a linear rail system equipped with sliders, as illustrated in
ig. 9. The freely translating plate is connected to two rails through the use of two sliders. This approach was adopted to minimize
igid motion between the sliders and the rails, thus reducing frictional effects during testing. To counterbalance the weight of the
reely translating top plate, we integrated a pulley system into the fixture. This measure is crucial for precisely capturing the bistable
ature of the Kresling, as the weight of the top plate would otherwise exert force on the top surface of the Kresling, thus potentially
ffecting the accuracy of the experiment.

. Results and discussion

With the introduction of these new experimental setups shown in Figs. 8 and 9, we are able to program loading conditions on a
ulti-cell Kresling array, leading to various folding sequences. First, we investigate the new experimental setups using a single cell.
ext, we explore multiple loading conditions for Kresling arrays comprised of two cells, each with different geometric parameters
nd either identical or opposite chirality. We choose 0.25 mm/s for the compression experiment and 0.5 deg/s for the torsional
xperiment. The details of the loading rate analysis are shown in Appendix C.

.1. Experiments on single Kresling cell

We conduct axial compression and torsional experiments on Kresling cells with 𝜑max = 60◦ and 𝜑max = 90◦ to both validate
the theoretical model and investigate their mechanical behavior. The compression and twisting tests are shown in Fig. 10A and B,
respectively. We measure both force and torque data using the force/torque sensor of the test machine. The torque and force curves
in Fig. 10A and B, respectively, verify the effectiveness of our free-rotating and free-translating fixtures, respectively, ignoring the
little difference between experiment curves and zero due to fabrication and other errors. Notably, negative force and torque are
obtained from the free-rotating compression and free-translating torsional experiments (Fig. 10), which result from the bistability
of the Kresling cell.

We then proceed to compare the experimental results with the theoretical model discussed in Section 3. To predict the mechanical
properties of the Kresling cells, we conducted a material experiment (see Appendix D) on the composite material to determine the
elastic modulus, which was found to be 𝐸 = 1503.27 MPa. Since we assume that 𝑘𝑠 in Eq. (14) is equal to 𝐸𝐴 and 𝐴 is the cross-
section area of the bar element, it is necessary to propose a calculation method of 𝐴 related to the fabrication process of different
creases. Here, the valley creases are modeled by cylindrical bar elements with a radius 𝑡∕2 (𝑡 = 0.4 mm represents the thickness
of the composite material), leading to 𝐴 rewritten as 𝐴𝑐 = 𝜋(𝑡∕2)2. However, the mountain creases were cut in the fabrication
process. Thus, we use cylindrical bar elements with smaller diameters than valley creases to model mountain creases and rewrite 𝐴
as 𝐴𝑏 = 𝜋(𝑡∕7)2, where 𝑡∕7 is the radius of bar element of mountain creases. Substituting 𝐴𝑏 and 𝐴𝑐 into 𝑘𝑠 = 𝐸𝐴, we can re-write
Eq. (14) as follows.

𝑘𝑠,𝑏 = (𝐸𝐴𝑏)∕𝑏0, 𝑘𝑠,𝑐 = (𝐸𝐴𝑐 )∕𝑐0 (20)

Moreover, we present a crease stiffness experiment to determine the normalized rotational stiffness of creases (details are depicted
in Appendix D), resulting in 𝑘𝑟 = 0.0054 N mm(rad mm)−1. Based on the above material parameters, the theoretical calculations can
be performed by substituting Eqs. (15) and (20) into Eqs. (9), (12), and (13) (see Fig. 10A and B).

A reasonably good match is found when comparing the theoretical results with the experimental data, despite some differences
between the curves. These differences are attributed to varying deformations between the panels in the actual test specimens and
the simplification due to the use of bar elements in the theoretical model. Furthermore, the elastic energy curves in Fig. 10A and B
reveal a significant energy barrier for both Kresling cells with 𝜑max = 60◦ and 𝜑max = 90◦ under the two different loading conditions.
This feature presents an opportunity to design a multi-cell Kresling array with controllable folding paths.

5.2. Experiments on two-cell Kresling array

We present two types of two-cell Kresling arrays designed to study controllable folding paths. Detailed geometric parameters for
these arrays are provided in Table 2. Here, we define that the right-handed chiral Kresling cell can be folded using counterclockwise
torsion, while the left-handed one can be folded by clockwise torsion. Thus, the first array consists of a 𝜑max = 60◦ Kresling cell with

◦ ◦
12

right-handed chirality and a 𝜑max = 90 Kresling cell with the same chirality. The second array consists of a 𝜑max = 60 Kresling cell
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Fig. 10. Theoretical and experimental results of the single Kresling cell testing considering two loading conditions, i.e., compression (free-rotation) and twist
free-translation). Here, two Kresling designs are investigated, i.e, 𝜑max = 60◦ and 90◦. (A) Compression loading condition. The theoretical strain energy of the

Kresling cell versus the vertical displacement of any vertices on the top hexagonal plane (left); force applied on the top plane versus vertical displacement
(center); torque measured under compression loading (right). (B) Torsional loading condition. The strain energy versus the twisting angle of the top hexagonal
plane (left); torque applied on the top plane versus the twisting angle (center); force measured under rotational loading (right). The theoretical torque (right
plot in (A)) and force (right plot in (B)) are zero.

with right-handed chirality and a 𝜑max = 90◦ Kresling cell with opposite chirality. The different arrangement of chiral Kresling cells
leads to various folding paths under torsional loading conditions.

5.2.1. Kresling array consisting of two cells with same chirality
We consider a Kresling array composed of two identical chiral cells and conduct two experiments. First, we perform an axial

compression experiment with 75 mm displacement range (Fig. 11A), and then a counterclockwise torsional experiment with 140◦

twisting angle (Fig. 11B). Notice that both the torque curve in Fig. 11A and the force curve in Fig. 11B are close to zero, which
indicates the effective functioning of the free-rotating fixture and free-translating fixture in the experiments for the array composed
of two identical chiral cells.

The force and torque curves reveal that the mechanical properties of Kresling cell within the array qualitatively match those
of the single cell. The force curve in Fig. 11A exhibits three distinct zero points (red-colored) corresponding to three stable states,
denoted as configurations I, III, and V, under a compression loading condition. Compared with the single-cell experiments, the three
stable states of the Kresling array are a combination of the two stable states of the top cell and those of the bottom cell. The same
behavior is observed in the torsion loading experiment depicted in Fig. 11B. These consistent findings in different loading conditions
indicate that the Kresling array, consisting of two identical chiral cells, follows the same folding process regardless of the applied
load.

5.2.2. Kresling array consisting of two cells with opposite chirality
In the investigation of a Kresling array composed of opposite chiral cells, we first conduct a free-rotating compression experiment

using the same displacement as the experiment on the Kresling array consisting of identical chiral cells (Fig. 12A). The force and
torque curves demonstrate that the Kresling array with opposite chiral cells exhibits similar mechanical behaviors and folding paths
as the array with identical chiral cells in the compression experiment.

Secondly, we introduced a two-step torsional experiment starting with a counterclockwise torsional loading condition to the
Kresling array with two opposite chiral cells (Fig. 12B). In this experiment, we defined that step 1 is a counterclockwise torsional
experiment with 58◦ twisting angle, and step 2 is a clockwise torsional experiment with 85◦ twisting angle. Here, we define that
13
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Fig. 11. Experimental results of the Kresling array consisting of two identical chiral cells. (A) Axial compression (free-rotation) experimental results. The
representative deformed configurations (top). Force applied to the top of the array versus vertical displacement of the top hexagonal plane (bottom-left). Torque
measured under compression loading condition (bottom-center). Schematic of the boundary conditions for compression loading condition (right). (B) Torsional
(free-translation) experimental results. The representative deformed configurations (top). Torque applied on the top of the array versus twisting angle of the
top hexagon plane (bottom-left). Force measured under torsional loading condition (bottom-center). Schematic of the boundary conditions for torsional loading
condition along a counterclockwise direction (right).

clockwise torsion is negative while counterclockwise torsion is positive in the torque curves of a two-step torsional experiment.
From configurations and torque curve in Fig. 12B, we observe that only the 𝜑max = 60◦ Kresling cell folded and deployed under this
loading condition. This outcome results from the fact that deploying a 𝜑max = 60◦ Kresling cell with right-handed chirality is easier
than folding a 𝜑max = 90◦ one with left-handed chirality using clockwise torsional loading condition, i.e., a lower energy is required
for folding a 𝜑max = 60◦ cell than deploying a 𝜑max = 90◦ one.

Finally, we present a two-step torsional experiment starting with a clockwise torsional loading condition on the Kresling array
composed of two opposite chiral cells (Fig. 12C). The 1st step is a clockwise torsional experiment with 88◦ twisting angle, while the
2nd step is a counterclockwise torsional experiment with 55◦ twisting angle. The drops in the torque curve are caused by the panel
buckling of the 𝜑max = 60◦ cell. Ignoring these buckling responses, we conclude from Fig. 12C that the Kresling cells in this torsional
experiment have similar mechanical behaviors with the single-cell experimental results. According to the configurations captured
in the experiment, the 𝜑max = 90◦ Kresling cell with left-handed chirality is folded before the 𝜑max = 60◦ one with right-handed
chirality is folded, which overcomes the influence of lower energy barrier in Fig. 12B.
14
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Fig. 12. Experimental results of 2-cell Kresling array with opposite chirality under compression (free-rotation) and torsional (free-translation) loading conditions.
The folding configurations, force, and torque curves under (A) the compression loading condition and (B) (C) the torsional loading conditions. The loading
conditions are illustrated in the schematics on the right. The specimen in (B) is folded by a counterclockwise torsion in step 1 and a clockwise torsion in step 2.
Conversely, the specimen in (C) is folded by a clockwise torsion in step 1 and a counterclockwise torsion in step 2. Grey arrows show the direction of loading.
15
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Comparing the results in Figs. 11 and 12, we notice that a Kresling array with identical chiral cells has only one folding path
nder different loading conditions. In contrast, a Kresling array with opposite chiral cells possesses multiple folding paths, which
an be controlled by different loading conditions, e.g., clockwise torsion and counter-clockwise torsion.

.2.3. Instability/Buckling effects in two-cell Kresling array analysis
In the torsional experiment of the 2-cell array with opposite chirality (Fig. 12C), we observed panel buckling in the 𝜑max = 60◦

ell (blue color) changing from configuration I to configuration II. Then, the buckled panel recovered during deformation from
onfiguration III to configuration IV. More details about buckling effects are presented in Appendix E.

. Concluding remarks

The Kresling pattern possesses a rich mechanics behavior, which is associated to its non-rigid origami behavior coupling
xial deformation and twist. On the theoretical mechanics front, we presented a comprehensive model incorporating the five
epresentative geometrical parameters of the Kresling origami cell into the corresponding energy function, which is applicable to
ither single cell or multi-cell arrays. On the experimental mechanics front, we have created two experimental configurations that
ecouple the deformation modes (axial deformation and twist) of the Kresling pattern. The first experimental configuration consists
f a free-rotating fixture for tension/compression experiments, and the second experimental setup consists of a free-translating
ixture for torsional experiments. The aforementioned experimental setups can be used to test Kresling arrays composed of either
n odd number of cells, or an even number of cells, without any constraint on the chiral arrangement of any cell or group of cells.

When testing the 2-cell Kresling array, we found that if the cells have different energy barriers but the same chirality, then
here is only one folding path under different loading conditions. In contrast, if the Kresling cells have opposite chirality, then there
re multiple folding paths, which can be controlled by different loading conditions, e.g., clockwise torsion and counter-clockwise
orsion. Thus, the interplay between energy barriers and chirality provides the means to control mechanical behavior, folding path,
nd output configurations by programming the loading sequence (compression or twist).

Such experimental capability opens up numerous applications for Kresling origami, particularly in the field of mechanical
omputing. One of the significant challenges in this research field is to achieve multiple mechanical logic networks, essentially
etermining the folding sequence of the origami assembly, within a single structure through the control of loading sequence (Yasuda
t al., 2021).
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Appendix A. Theoretical details

A.1. Initial configuration

As shown in Fig. 4A, the initial configuration in the deployed state is described by six geometrical parameters: three side lengths,
0, 𝑏0, 𝑐0, and three dihedral angles 𝛿𝑎0, 𝛿𝑏0, 𝛿𝑐0. Given four intrinsic parameters, 𝑟, 𝑛, ℎ0, 𝜃0, we can calculate the three side lengths
s follows:

𝑎0 = 2𝑟 sin (𝜋∕𝑛) (A.1)

𝑏0 =
√

ℎ20 + 𝑝2 =
√

ℎ20 + 4𝑟2 sin2 (𝜃0∕2) (A.2)

𝑐0 =
√

ℎ20 + 𝑚2 =
√

ℎ20 + 4𝑟2 sin2 (𝜃0∕2 + 𝜋∕𝑛) (A.3)

The dihedral angle 𝛿𝑎0, as illustrated in the orange triangle in Fig. 4A and C, can be calculated by ℎ0 and 𝑞, i.e. tan 𝛿𝑎0 = ℎ0∕𝑞. Given
= 𝑚 sin(𝜃0∕2) = 2𝑟 sin (𝜃0∕2 + 𝜋∕𝑛) sin(𝜃0∕2), 𝛿𝑎0 can be obtained as:

𝛿𝑎0 = arctan
ℎ0

2𝑟 sin (𝜃0∕2 + 𝜋∕𝑛) sin(𝜃0∕2)
(A.4)

Using the pink and purple triangles in Fig. 4A and C, we calculate the two dihedral angles as 𝛿𝑏0 = 𝜋 − 𝛾 and 𝛿𝑐0 = 𝜋 − 𝛽, where
𝛾 and 𝛽 are derived from vectors 𝑛1, 𝑛2, and 𝑛3. In the Cartesian coordinate system 𝑂𝑥𝑦𝑧 (Fig. 4A), the three vectors are expressed
s 𝑛1 = ⃗𝐴1𝐵2 × ⃗𝐴1𝐴2, 𝑛2 = ⃗𝐴1𝐵1 × ⃗𝐴1𝐵2, and 𝑛3 = ⃗𝐵1𝐵2 × ⃗𝐵1𝐶2. Then, the sector angle between the vectors can be obtained by
os 𝛾 = (𝑛2 ⋅ 𝑛3)∕(‖𝑛2‖‖𝑛3‖) and cos 𝛽 = (𝑛1 ⋅ 𝑛2)∕(‖𝑛1‖‖𝑛2‖). Substituting the coordinates of vertices into these equations, we have:

𝛿𝑏0 = 𝜋 − arccos
ℎ20 cos (𝜃0 + 2𝜋∕𝑛) − 𝑟2[cos (𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2

ℎ20 + 𝑟2[cos (𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2
(A.5)

𝛿𝑐0 = 𝜋 − arccos
ℎ20 cos 𝜃0 − 𝑟2[cos (𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2

ℎ20 + 𝑟2[cos (𝜃0 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2
(A.6)

A.2. Folding configuration

Similarly, we obtain expressions of the six geometric parameters in a folding configuration (Fig. 4B):

𝑎 = 2𝑟 sin (𝜋∕𝑛) (A.7)

𝑏(𝑢, 𝜑) =
√

ℎ2 + 4𝑟2 sin2 (𝜃∕2) (A.8)

𝑐(𝑢, 𝜑) =
√

ℎ2 + 4𝑟2 sin2 (𝜃∕2 + 𝜋∕𝑛) (A.9)

𝛿𝑎(𝑢, 𝜑) = arctan ℎ
2𝑟 sin (𝜃∕2 + 𝜋∕𝑛) sin(𝜃∕2) (A.10)

𝛿𝑏(𝑢, 𝜑) = 𝜋 − arccos
ℎ2 cos (𝜃 + 2𝜋∕𝑛) − 𝑟2[cos (𝜃 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2

ℎ2 + 𝑟2[cos (𝜃 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2
(A.11)

𝛿𝑐 (𝑢, 𝜑) = 𝜋 − arccos
ℎ2 cos 𝜃 − 𝑟2[cos (𝜃 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2

ℎ2 + 𝑟2[cos (𝜃 + 𝜋∕𝑛) − cos (𝜋∕𝑛)]2
(A.12)

Note that by substituting the relationship ℎ = ℎ0 − 𝑢 and 𝜃 = 𝜑 + 𝜃0 (illustrated in Fig. 4) into Eqs. (A.7)–(A.12), we can obtain
qs. (1)–(6) in Section 3.

.3. Solutions to the analytical formulation
17

Here, we present a numerical solution scheme solving the theoretical formulations Eqs. (16)–(19) in Section 3.
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B

𝑆

Solving 𝜕𝑈∕𝜕𝜑 = 0 and 𝜕𝑈∕𝜕𝑢 = 0. We define the accuracy of the numerical solution by the parameter 𝑛𝑣. The two variables (𝑢 and
𝜑) can be described by two sets, 𝑆𝑢 and 𝑆𝜑, involving 𝑛𝑣 members:

𝑆𝑢 = {𝑢𝑖 (𝑖 = 1, 2,… , 𝑛𝑣) ∣ 0 ≤ 𝑢𝑖 ≤ (ℎ0 − ℎfolded)} (A.13)

𝑆𝜑 = {𝜑𝑗 (𝑗 = 1, 2,… , 𝑛𝑣) ∣ 0 ≤ 𝜑𝑗 ≤ (𝜃max − 𝜃0)} (A.14)

y combining Eqs. (A.13) and (A.14), a new set with 𝑛𝑣 × 𝑛𝑣 members is expressed as:

𝑆 = {(𝑢𝑖, 𝜑𝑗 ) (𝑖, 𝑗 = 1, 2,… , 𝑛𝑣) ∣ 0 ≤ 𝑢𝑖 ≤ (ℎ0 − ℎfolded), 0 ≤ 𝜑𝑖 ≤ (𝜃max − 𝜃0)} (A.15)

Next, we demonstrate the process of solving 𝜕𝑈∕𝜕𝜑 = 0 and 𝜕𝑈∕𝜕𝑢 = 0 via an example considering 𝑛𝑣 = 5000, ℎ0 = 39.48,
ℎfolded = 0, 𝜃max = 90◦, 𝜃0 = 30◦, 𝑛 = 6, 𝑟 = 30, 𝑘𝑠 = 50 and 𝑘𝑟 = 5 × 10−3. The solution scheme is summarized in four steps as
follows:

Step 1: We substitute Eq. (A.15) into Eq. (9), and obtain an energy surface with 𝑛𝑣 × 𝑛𝑣 (5000 × 5000) nodes — see the gray
surface in Fig. A.1.

Step 2: For 𝑖 = 1, we assume 𝑢1 = 10 ∈ (0, 39.48), and define the set 𝑆𝑢1 ∈ 𝑆 as:

𝑆𝑢1 = {(𝑢1 = 10, 𝜑𝑗 ) (𝑗 = 1, 2,… , 5000) ∣ 0 ≤ 𝜑𝑗 ≤ 60} (A.16)

Substituting Eq. (A.16) into Eq. (9), we obtain an energy curve denoted by 𝑈 (𝑢1 = 10, 𝜑) (see the dark blue solid line in Fig. A.1A).
Step 3: We find the minimum point on the energy curve 𝑈 (𝑢1 = 10, 𝜑) and denote the point (i.e., the light blue dot in Fig. A.1A)

as (𝑢1 = 10, 𝜑 = 28.65), which satisfies the following condition:

𝜕𝑈 (𝑢1 = 10, 𝜑)
𝜕𝜑

∣𝜑=28.65= 0 (A.17)

Thus, (𝑢1 = 10, 𝜑 = 28.65) is one solution of 𝜕𝑈∕𝜕𝜑 = 0.
Repeating Steps 2 and 3 for 𝑖 varying from 2 to 5000, we obtain 5000 solutions of 𝜕𝑈∕𝜕𝜑 = 0 and denote them by the set 𝑆axial

as follows:

𝑆axial = {(𝑢𝑖, 𝜑) (𝑖 = 1, 2,… , 𝑛𝑣) ∣ 0 ≤ 𝑢𝑖 ≤ 39.48,
𝜕𝑈 (𝑢𝑖, 𝜑)

𝜕𝜑
= 0} (A.18)

The solution set 𝑆axial corresponds to the relationship 𝜑 = 𝑓𝐹 (𝑢) presented in Section 3. Substituting Eq. (A.18) into Eq. (9), we
obtain the elastic energy of the Kresling cell under axial loading (i.e., the light blue solid line in Fig. A.1B).

Step 4: For 𝑗 = 1, we assume 𝜑1 = 20 ∈ (0, 60), and define the set 𝑆𝜑1
∈ 𝑆 as:

𝑆𝜑1
= {(𝑢𝑖, 𝜑1 = 20) (𝑖 = 1, 2,… , 5000) ∣ 0 ≤ 𝑢𝑖 ≤ 39.48} (A.19)

Substituting Eq. (A.19) into Eq. (9), we obtain an energy curve denoted by 𝑈 (𝑢, 𝜑1 = 20) (see the purple dashed line in Fig. A.1C).
Step 5: We find the minimum point on the energy curve 𝑈 (𝑢, 𝜑1 = 20) and denote the point (i.e., the orange dot in Fig. A.1C)

as (𝑢 = 6.33, 𝜑1 = 20), which satisfies the following condition:

𝜕𝑈 (𝑢, 𝜑1 = 20)
𝜕𝑢

∣𝑢=6.33= 0 (A.20)

Thus, (𝑢 = 6.33, 𝜑1 = 20) is one solution of 𝜕𝑈∕𝜕𝑢 = 0.
Repeating Steps 4 and 5 for 𝑗 changing from 2 to 5000, we obtain 5000 solutions of 𝜕𝑈∕𝜕𝑢 = 0 and denote them by the set

torsional as follows:

𝑆torsional = {(𝑢, 𝜑𝑗 ) (𝑗 = 1, 2,… , 𝑛𝑣) ∣ 0 ≤ 𝜑𝑗 ≤ 60,
𝜕𝑈 (𝑢, 𝜑𝑗 )

𝜕𝑢
= 0} (A.21)

The solution set 𝑆torsional corresponds to the relationship 𝑢 = 𝑓𝑇 (𝜑) presented in Section 3. Substituting Eq. (A.21) into Eq. (9), we
obtain the elastic energy of the Kresling cell under torsional loading (i.e., the orange dash line in Fig. A.1D).

Solving stable states, Eqs. (17) and (19) . As shown in Section 3.3, the solutions of stable states satisfy the following conditions:

𝜕𝑈∕𝜕𝑢 = 0, 𝜕𝑈∕𝜕𝜑 = 0,

𝜕2𝑈∕𝜕𝑢2 > 0 (for axial loading) and 𝜕2𝑈∕𝜕𝜑2 > 0 (for torsional loading)
(A.22)

The two conditions, 𝜕𝑈∕𝜕𝜑 = 0 and 𝜕𝑈∕𝜕𝑢 = 0, indicate that the solutions of Eq. (A.22) are 𝑆axial ∩ 𝑆torsional. For a cell with two
stable states, the intersection of the two solution sets is as follows:

𝑆axial ∩ 𝑆torsional = {(0, 0), (12.1, 33), (27.7, 55)} (A.23)

Since (12.1, 33) violates the second order conditions in Eq. (A.22), the solution set is {(0, 0), (27.7, 55)}. The 2nd stable point (27.7, 55)
18

is illustrated by the black dot in Fig. A.1E.
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Fig. A.1. Illustration of solving the analytical formulation of the Kresling cell. (A) Energy surface, curve 𝑈 (𝑢 = 10, 𝜑), and minimum value 𝑈 (𝑢 = 10, 𝜑 = 28.65).
(B) Energy surface, curve 𝜕𝑈∕𝜕𝜑 = 0, and point 𝑈 (𝑢 = 10, 𝜑 = 28.65). (C) Energy surface, curve 𝑈 (𝑢, 𝜑 = 20), and minimum value 𝑈 (𝑢 = 6.33, 𝜑 = 20). (D) Energy
surface, curve 𝜕𝑈∕𝜕𝑢 = 0, and point 𝑈 (𝑢 = 6.33, 𝜑 = 20). (E) Energy curves 𝜕𝑈∕𝜕𝜑 = 0 and 𝜕𝑈∕𝜕𝑢 = 0, and 2nd stable state. In this figure, we select 𝑛 = 6, 𝑟 = 30,
𝜃0 = 30◦, 𝑘𝑠 = 50 and 𝑘𝑟 = 5 × 10−3.

Appendix B. Details of specimen fabrication

The experimental specimens are made of a composite material consisting of two layers of paper and one layer of tape. Before
joining the three layers, we utilized a laser cutter to remove the top and bottom layers of paper from the composite material at
crease areas (see the black lines in Fig. B.1). Then, the two layers of paper were attached to the two sides of the 0.17 mm-thick 3M
9474LE adhesive transfer tape. As shown in Fig. B.1, all three layers of the composite material were cut at mountain crease areas.
Finally, the patterned composite material was assembled to the folded configuration of the Kresling cell, where the top and bottom
polygons were glued to a thin 3D-printed plate with magnets, respectively.

Appendix C. Effect of loading rates

To explain the effect of loading rate on the experimental results, we have conducted compression tests under 1.5 mm/s,
0.25 mm/s, and 0.05 mm/s; and torsional tests under 2.5 deg/s, 0.5 deg/s, and 0.1 deg/s. The experimental results reveal that
our novel experimental fixtures are slightly affected by the loading rate. The difference observed at the initial peak point of the
force/torque curve (Fig. C.1A and C) is caused by the viscoelasticity of the 3M tape used in the composite material of our experiment
specimens. Since there is no obvious trend or pattern observed in the curves (Fig. C.1B and D) while increasing the loading rate,
we conclude that loading rates do not influence the torque measurement during the compression test, and the force measurement
under the torsional test, respectively. Those observations justify the efficiency of our setups in terms of torque/force decoupling.
19
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Fig. B.1. Details of fabricating composite Kresling cell.

Fig. C.1. Experimental results under different loading rates. (A) Force and (B) torque measurements of compression experiments under 1.5 mm/s, 0.25 mm/s,
and 0.05 mm/s. (C) Torque and (D) force measurements of torsional experiments under 2.5 deg/s, 0.5 deg/s, and 0.1 deg/s.
20
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Fig. D.1. Tensile experiment of the composite material. (A) Experimental specimens. (B) A photograph of the setup. (C) Stress vs. strain curves.

Table D.1
Rotational stiffness results.
Sample 𝑘𝑟 (N mm (rad mm)−1) 𝑅2

1 0.0057 0.9124
2 0.0050 0.9311
3 0.0054 0.9364
Average 0.0054 0.9266

Appendix D. Material and rotational stiffness experiments

D.1. Material experiment

In the material experiment, we use the rectangular specimen (Liu et al., 2020) (dimensions are shown in Fig. D.1A) with the
same thickness and fabrication method as the composite material in Appendix B. The two reinforced areas on the specimen in
Fig. D.1A are connected to the tensile fixtures of the Instron loading frame machine in Fig. D.1B. We tested three samples and drew
the experimental results in Fig. D.1C. The elastic modulus, 𝐸, used in this paper is the secant modulus at 0.5% strain in Fig. D.1C,
where 𝐸 = 1503.27 MPa.

D.2. Rotational stiffness experiment

To obtain the crease rotational stiffness, we design the experimental specimen shown in Fig. D.2A. The primary crease, indicated
by the middle blue line, is fabricated in the same way as the creases in Appendix B, while the weaker creases, indicated by dot lines,
are made of a softer tape than the 3M 9474LE adhesive transfer tape (used for the primary crease). In order to estimate the rotational
stiffness of the primary crease, we repeatedly pre-folded the weaker creases about 10 times to make them nearly rotation-free. From
the schematic in Fig. D.2B and C, we calculate the moment and rotation angle of the primary crease as follows:

𝑀 = 𝐹𝐿 + 𝐺p𝐿∕2 (D.1)

𝜔 = 2[arcsin (𝑑0∕2𝑎) − arcsin (𝑑∕2𝑎)] (D.2)

where 𝐿 =
√

𝑎2 − (𝑑∕2)2. According to Fig. D.2D, we can calculate the rotational stiffness per unit length, 𝑘𝑟, by linear regression.

𝑘𝑟 = 𝛥𝑀∕(𝐿s𝛥𝜔) (D.3)

The results of rotational stiffness are shown in Table D.1. The term 𝑅2 denotes the coefficient of determination for the linear
regression model.
21
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Fig. D.2. Crease rotational stiffness experiment. (A) Design of experimental specimens. The primary crease is fabricated using the same way as the creases in
Kresling sample. The weaker creases are fabricated by tape softer than the primary crease and pre-folded 10 times. (B) Schematic and (C) a photograph of the
setup. (D) Experimental results and rotational stiffness, 𝑘𝑟, obtained by linear regression.

Fig. E.1. Buckling effect on the energy landscape. (A) Photos of configurations I, II, III, and IV show the panel buckling of the 𝜑max = 60◦ cell. (B) Experimental
results of 2-cell Kresling array with opposite chirality under torsional (free-translation) loading condition (Fig. 12C). (C) Left: Energy curve obtained from the
data in (A). Right: Details of the energy curve corresponding to the two drops in (A).

Appendix E. Two-cell Kresling array

E.1. Instability/buckling issue

We investigate the buckling effect observed in the torsional experiments of the 2-cell array with opposite chirality. The panels
of the 𝜑max = 60◦ cell (blue color) buckled during the folding process from configuration I to configuration II (𝜑 ≈ −25◦), and
‘‘recovered’’ during the folding process from configuration III to configuration IV (𝜑 ≈ −73◦), as shown in Fig. E.1A. This leads to
local oscillations in Fig. E.1B resulting in varying slopes of the energy curve in Fig. E.1C.

E.2. Simplified theoretical analysis

We present an extended theoretical analysis for 2-cell Kresling arrays. The analysis, inspired by Lu et al. (2022), combines single
cell solutions (e.g., 𝜑max = 60◦ cell and 𝜑max = 90◦ cell) in two steps as follows: (1) The 𝜑max = 60◦ cell in the array folds and
the corresponding theoretical result is taken as the single cell solution; (2) We assume that the 𝜑max = 60◦ cell remains in the
folded configuration, and the 𝜑max = 90◦ cell starts to fold. The corresponding deformation (displacement/twist angle) begins at the
endpoint of step (1). The corresponding force/torque obtained in step (2) is a superposition of two single cell solutions. Fig. E.2
compares the theoretical solutions and corresponding experimental results for the 2-cell arrays with different arrangements of
chirality under various loading conditions. Since we do not consider buckling in the analytical formulation, we expect discrepancies
between theoretical and experimental results. Besides the buckling effects, other factors might contribute to those discrepancies,
such as the nature of the simplified theoretical modeling, and not accounting for the self-weight of the cells.
22
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Fig. E.2. Comparison between theoretical and experimental results of 2-cell arrays. The theoretical results are the combination of the theory of two unit cells.
(A) Compression and (B) torsional experiments on the 2-cell array with the same chirality. (C) Compression experiment, (D) torsional experiment starting from
controlling 𝜑max = 60◦ cell, and (E) torsional experiment starting from controlling 𝜑max = 90◦ cell on the 2-cell array with opposite chirality. Grey arrows show
the direction of loading.

Appendix F. Nomenclature

Geometric parameters of Kresling origami cell
𝛿𝑎0 Initial dihedral angle between surface polygons and side triangular panels
𝛿𝑎 Dihedral angle between surface polygons and side triangular panels
𝛿𝑏0 Initial dihedral angle between side triangular panels along mountain folds
𝛿𝑏 Dihedral angle between side triangular panels along mountain folds
𝛿𝑐0 Initial dihedral angle between side triangular panels along valley folds
𝛿𝑐 Dihedral angle between side triangular panels along valley folds
𝜃 Relative angle between the top and bottom polygons
𝜃0 Relative angle between the top and bottom polygons in the deployed state
𝜃max Relative angle between the top and bottom polygons in the folded configuration
𝜑 Twisting angle of the top polygon with bottom polygon fixed
𝜑max Maximum value of 𝜑, i.e., 𝜃max − 𝜃0
𝐴 Cross-section area of the bar element
𝑎 Side length of polygons
𝑎0 Initial side length of polygons
𝐴𝑏 Cross-section area of the bar element of mountain creases
𝐴𝑐 Cross-section area of the bar element of valley creases
𝑏 Length of mountain creases
𝑏0 Initial length of mountain creases
𝑐 Length of valley creases
𝑐0 Initial length of valley creases
23
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ℎ Height of Kresling origami cell
ℎ0 Height in the initial configuration
ℎfolded Height in the folded configuration
𝑛 Number of edges of the top/bottom polygon
𝑛𝑎 Number of edges of top and bottom surfaces
𝑛𝑏 Number of mountain creases
𝑛𝑐 Number of valley creases
𝑟 The radius of the circumscribed circle of polygon
𝑡 Thickness of the composite material used in experimental specimen
𝑢 Distance between points 𝐵2 and 𝐵′

2 in the 𝑧-direction
Mechanical parameters of Kresling origami cell
𝛱 Total potential energy
𝐸 Elastic modulus
𝑒1 Component of 𝛿𝑏 and 𝛿𝑐 items in force and torque equations
𝑒′1 Derivation of 𝑒1
𝐹 Axial force
𝑓𝐹 (𝑢) Relationship between 𝜑 and 𝑢 derived from 𝜕𝑈∕𝜕𝜑 = 0
𝑓𝑇 (𝜑) Relationship between 𝑢 and 𝜑 derived from 𝜕𝑈∕𝜕𝑢 = 0
𝑔𝑏 Component of the 𝛿𝑏 item in torque equation
𝑔𝑐 Component of the 𝛿𝑐 item in torque equation
𝑘𝑟 Rotational stiffness of the crease per unit length
𝑘𝑠 Stretching stiffness of the material
𝑘𝑟,𝑎 Folding stiffness between surface polygons and side triangular panels
𝑘𝑟,𝑏 Folding stiffness between side triangular panels along mountain folds
𝑘𝑟,𝑐 Folding stiffness between side triangular panels along valley folds
𝑘𝑠,𝑏 Stretching stiffness of mountain creases
𝑘𝑠,𝑐 Stretching stiffness of valley creases
𝑇 Torque
𝑈 Total elastic energy
𝑈𝑏𝑎𝑟 Elastic energy stored in bar elements
𝑈𝑟𝑜𝑡 Elastic energy provided by rotational springs
𝑊 Work
Parameters in appendix of theoretical details
𝛽 Sector angle between vectors 𝑛1 and 𝑛2
𝛾 Sector angle between vectors 𝑛2 and 𝑛3
𝜑𝑗 The member in set 𝑆𝜑
𝑛1 Normal vector of the triangular panel ▵𝐴2𝐴1𝐵2
𝑛2 Normal vector of the triangular panel ▵𝐴1𝐵1𝐵2
𝑛3 Normal vector of the triangular panel ▵𝐵2𝐵1𝐶2
𝑚 Distance between points 𝐴1 and 𝑆 (the projection of point 𝐵2 onto the bottom polygon)
𝑛𝑣 Resolution of the scheme in the solution of the analytical formulation
𝑝 Distance between points 𝐵1 and 𝑆 (the projection of point 𝐵2 onto the bottom polygon)
𝑞 Distance between points 𝑇 (the projection of point 𝐵2 onto the line 𝐴1𝐵1) and 𝑆
𝑆 Set of (𝑢, 𝜑)
𝑆axial Solution set of the condition 𝜕𝑈∕𝜕𝜑 = 0
𝑆tortional Solution set of the condition 𝜕𝑈∕𝜕𝑢 = 0
𝑆𝜑 Set of variables 𝜑
𝑆𝑢 Set of variables 𝑢
𝑆𝜑1

Set of (𝑢, 𝜑 = 20)
𝑆𝑢1 Set of (𝑢 = 10, 𝜑)
𝑢𝑖 The member in set 𝑆𝑢
Parameters in appendix of stiffness experimental details
𝜔 Folding angle between two rectangular panels along primary crease
𝑑 Distance between two weaker creases in the schematic of experimental setup
𝑑0 Initial distance between two weaker creases in the schematic of experimental setup
𝐺𝑝 Gravity of one rectangular panel of the specimen in the schematic of experimental setup
𝐿 Horizontal distance between the primary crease and the loading point
𝐿𝑠 Length of the primary crease
𝐿𝑤 Length of the reinforced area in the schematic of experimental setup
𝑀 Moment of the primary crease
𝑣 Poisson’s ratio
24
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Appendix G. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2024.105630.
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