
 
 

1 
 

 
 
 
 
 
Supporting Information for 
Modular Multi-degree-of-freedom Soft Origami Robots with 
Reprogrammable Electrothermal Actuation 
 
Shuang Wu, Tuo Zhao, Yong Zhu, Glaucio H. Paulino  
 
Yong Zhu, Glaucio H. Paulino 
Email: yzhu7@ncsu.edu, gpaulino@princeton.edu 
 
This PDF file includes: 
 

Supporting text 
Figures S1 to S8 
Tables S1 to S3 
SI References  

 
Other supporting materials for this manuscript include the following:  
 

Movies S1 to S5 
 
 

 

 

 

 
 
  



 
 

2 
 

Supporting Information Text 
1. Kresling origami geometry and design.  
The cylindrical Kresling origami has two kinematic stable configurations, i.e., deployed state and folded 
state. These two configurations can be determined by four independent geometry parameters, i.e., the 
height 𝐻! of the unit in the deployed state, the height 𝐻" in the folded state, number 𝑛 of polygon edges and 
corresponding edge lengths, 𝑏 (see illustrations in Fig. S1). Based on 𝐻!, 𝐻", 𝑛, and 𝑏, we compute two 
more geometry parameters, those are the relative twisting angles 𝜓! and 𝜓" between the top polygon and 
the bottom polygon in the two states, respectively (1),  

𝜓! = 2 tan#! 𝑥! , 𝜓" = 2 tan#! 𝑥" [S1] 
where 𝑥! and 𝑥" are defined as follows: 

𝑥! =
2	𝑦 sin(𝜋/𝑛)

1 + cos(2𝜋/𝑛) + 𝑧 𝑥" =
2	𝑦 sin(𝜋/𝑛)

1 + cos(2𝜋/𝑛) − 𝑧 [S2] 

and we define 𝑦 = sin(𝜋/𝑛):cot$(𝜋/𝑛) csc$(𝜋/𝑛) − [(𝐻/𝑏)$ − (𝐻" 𝑏⁄ )$]$ − cos(𝜋/𝑛) and 𝑧 =
[1 − cos(2𝜋/𝑛)][(𝐻 𝑏⁄ )$ − (𝐻" 𝑏⁄ )$]. 

In summary, all six geometry parameters, 𝐻!, 𝐻", 𝑛, 𝑏, 𝜓!, and 𝜓", fully construct the 3D configurations of 
the Kresling origami. Moreover, we compute design parameters of the 2D crease pattern, panel length 𝑎 
and angle 𝛾, as illustrated in Fig. S1 

𝑎 = 𝑏@A
𝐻"
𝑏 B

$

+
𝑥"$ csc$(𝜋/𝑛)

𝑥"$ + 1
 [S3] 

𝛾 = cos#! C
𝑥"[𝑥" − cot(𝜋/𝑛)]

:(𝑥"$ + 1)[(𝐻" 𝑏⁄ )$(𝑥"$ + 1) + 𝑥"$ csc$(𝜋/𝑛)]
D [S4] 

In the Results section, the Kesling robot segment has the following parameters, i.e., 𝐻! = 20.9 mm, 𝐻" =
6.3 mm, 𝑛 = 8, 𝑏 = 13.9 mm, 𝜓! = 48.3°, 𝜓" = 86.7°, 𝑎 = 25.3 mm, and 𝛾 = 113°. 

2. Reduced-order modeling for Kresling robot segments. 

Modeling details. The schematic diagram of the reduced order model used for simulating a Kresling unit 
is shown in Fig. S8(A). The total elastic energy, 𝑈, is the sum of the elastic energy stored in the stretching 
bars, 𝑈&'(, and that provided by the rotational springs, 𝑈)*(. The total energy can be calculated as: 

𝑈 = 𝑈&'( +𝑈)*( =
1
2𝑘)P𝑛+𝛿+

$ + 𝑛,𝛿,
$ + 𝑛&𝛿&

$R +
1
2𝑘(𝑁(∆-

$  [S5] 

where subscripts 𝑚, 𝑣 , 𝑏 denote the stretching bars along the mountain creases, valley creases, and 
octagon edges, respectively. The parameters 𝑛, 𝐿, 𝛿 denote number of the bars, lengths of the bars in the 
undeformed configuration, and length changes of the bars, respectively. Moreover, 𝑁( is the number of the 
rotational springs, and ∆- is the change of the dihedral angle related to the springs. Finally, the stiffness of 
the stretching bar is defined as 𝑘) = 𝑘)XXX/𝐿 (where 𝑘)XXX, measured by (N mm-1)mm, denotes the normalized 
stretching stiffness), and the stiffness of the rotational spring is defined as 𝑘( = 𝑘(XXX𝐿 (where 𝑘(XXX, measured 
by N mm(rad mm)-1, denotes rotational stiffness of the fold line per unit length). Given a constant 𝑘)XXX, e.g., 
𝑘)XXX = 80 (N mm-1)mm, we vary 𝑘(XXX from 0 to 4 × 10#$ N mm(rad mm)-1, and illustrate how the stiffness (𝑘(XXX) 
influence the monostable and bistable behaviors (Fig. S8B). For 𝑘(XXX = 0, the origami unit has two zero-
energy kinematically stable configurations. In this case, panel stretching dominates the deformation. As 𝑘(XXX 
increases, the position of the second stable state changes. This is due to the monotonically increasing 
energy contributed by panel folding. For 𝑘(XXX = 4 × 10#$  N mm(rad mm)-1, the origami unit behaves 
monostably.  
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Nonlinear solution scheme. We present an incremental-iterative approach to solve the nonlinear 
equilibrium equation [3] in the main text, i.e., 𝑻(𝒖) = 𝜒(𝒖)𝒇. At each incremental step, a series of iterations 
is conducted until convergence is achieved. The present incremental-iterative scheme is given by 

𝑲.#!/ 𝛿𝒖./ = 𝛿𝜒./𝒇 + 𝒓.#!/  [S6] 

where the superscript 𝑘 and the subscript 𝑗 denote the present increment and the iteration, respectively, 
the item 𝑲.#!/  denotes the tangent stiffness matrix at the previous 𝑗 − 1 iteration. We define the residual 
vector at the previous 𝑗 − 1 iteration as 𝒓.#!/ = 𝜒.#!/ 𝒇 − 𝑻P𝒖.#!/ R, and calculate the displacements and load 
factor by adding contributions from previous iterations, such as: 

𝒖./ = 𝒖.#!/ + 𝛿𝒖./    [S7] 

𝜒./ = 𝜒.#!/ + 𝛿𝜒./	   [S8] 

The augmented system in Eq. [S6] has (N + 1) unknowns, i.e., N displacement components P𝛿𝒖./R and one 
load parameter P𝛿𝜒./R, but only N equations. Therefore, we add an additional constraint equation as follows 
to compute the load factor: 

𝒂./ ∙ 𝛿𝒖./ + 𝑏./𝛿𝜒./ = 𝑐./   [S9] 

where the vector of unknowns P𝛿𝒖./R can be decomposed into two parts  

𝛿𝒖./ = 𝛿𝜒./𝛿𝒖0.
/ + 𝛿𝒖(.

/   [S10] 

such that Eq. [S6] becomes 

𝑲.#!/ 𝛿𝒖0.
/ = 𝒇

𝑲.#!/ 𝛿𝒖(.
/ = 𝒓.#!/  [S11] 

Solving Eq. [S9] for 𝛿𝜒./ and combining it with Eq. [S10] yields the new constraint expression as 

𝛿𝜒./ =
𝑐./ − 𝒂./ ∙ 𝛿𝒖(.

/

𝑎./ ∙ 𝛿𝒖0.
/ + 𝑏./

   [S12] 

where the constraint parameters, 𝒂./, 𝑏./, 𝑐./ are defined by the selected nonlinear solution scheme. In this 
work, we use the Modified Generalized Displacement Control Method (MGDCM) (2), a variant of the arc-
length method, as the solution scheme. The associated constraint parameters are specified as 

𝒂./ = 𝛿𝜒!/𝛿𝒖0!
/ , 𝑏./ = 0 [S13] 

and 

𝑐./ = d
𝑐 for	𝑗 = 1
0 for	𝑗 ≥ 2 [S14] 

where 𝑐 is defined as: 

𝑐 = (𝛿𝜒!!)$𝛿𝒖0!
! ∙ 𝛿𝒖0!

! [S15] 

and 𝛿𝜒!! = 𝛿𝜒 is the prescribed initial load factor at the first iteration of the first increment (i.e., 𝑘 = 𝑗 = 1). 
Since 𝛿𝒖(!

/ = 𝟎, the load factor in Eq. [S12] when 𝑗 = 1 and 𝑘 ≥ 2 becomes 

𝛿𝜒!/ =
𝛿𝜒

$
𝛿𝒖0!

! ∙ 𝛿𝒖0!
!

𝛿𝜒!/𝛿𝒖0!
/ ∙ 𝛿𝒖0!

/ = ±𝛿𝜒 j
𝛿𝒖0!

! ∙ 𝛿𝒖0!
!

𝛿𝒖0!
/ ∙ 𝛿𝒖0!

/j
!/$

 [S16] 
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The sign of 𝛿𝜒!/  in Eq. [S16] is determined by the sign of the inner product k𝛿𝒖0!
/#! ∙ 𝛿𝒖0!

/l, which will 
change only when the equilibrium configuration contains a load limit point. This fact implies that the sign of 
𝛿𝜒!/ corresponds to the sign of the stiffness of the system. In summary, the load factor increment 𝛿𝜒./ in the 
𝑗th iteration of the 𝑘th increment is determined by 

𝛿𝜒./ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝛿𝜒, 𝑘 = 1, 𝑗 = 1;

−
𝛿𝒖0!

! ∙ 𝛿𝒖0.
!

𝛿𝒖0!
! ∙ 𝛿𝒖0.

! , 𝑘 = 1, 𝑗 ≥ 2;

±𝛿𝜒 j
𝛿𝒖0!

! ∙ 𝛿𝒖0!
!

𝛿𝒖0!
/ ∙ 𝛿𝒖0!

/j
!/$

, 𝑘 ≥ 2, 𝑗 = 1;

−
𝛿𝒖0!

/ ∙ 𝛿𝒖0.
/

𝛿𝒖0!
/ ∙ 𝛿𝒖0.

/ , 𝑘 ≥ 2,�� ≥ 2.

 [S17] 

Note that the choice of the initial load factor 𝛿𝜒 can have a major influence on the arc-length method, and 
generally, a small value is chosen to capture complex nonlinear behaviors. Even so, the method can yield 
poor or non-convergent results for slightly larger values of the load factor. However, the adopted MGDCM 
is not very sensitive to the value of the initial load factor, and we can get converged results for a relatively 
wide range of 𝛿𝜒. The algorithm in Table S3, including a pseudo-code, summarizes the aforementioned 
incremental-iterative scheme. 

3. Bending performance of the bimorph actuator.  

The local curvature of the bimorph actuator can be calculated with Timoshenko’s expression:  

𝑘 =
6(𝛼! − 𝛼$)(𝑇 − 𝑇")(1 +𝑚)$

ℎ u3(1 +𝑚)$ + (1 +𝑚𝑛)(𝑚$ + 1
𝑚𝑛)v

 [S18] 

where 𝑚 = 𝑡! 𝑡$⁄  with 𝑡! and 𝑡$ as the thicknesses of the two layers (PI layer and LCE layer, respectively), 
ℎ = 𝑡! + 𝑡$, 𝑛 = 𝐸! 𝐸$⁄  with 𝐸! and 𝐸$ as Young’s moduli of the two layers, 𝑇" is the initial temperature, 𝑇 is 
the temperature of the actuator, and α1 and α2 are CTEs of the two layers, respectively. The Young’s 
modulus of PI is taken from Nexon data sheet and the Young’s modulus of LCE is taken from (3). CTE of 
PI is 3×10-5 °C−1 (from the data sheet of Nexon), and CTE of LCE is -2.24×10-3 °C−1 (derived from the 
measured strain/temperature relationship of fabricated LCE ribbon).  

4. Chirality of the units in the crawling robot. 

In the 7-unit crawling robot, we adopt a symmetric design of chirality to achieve a robust crawling 
mechanism during the bidirectional locomotion. If we denote the first passive unit as “L” in chirality and “R” 
for the opposite, the soft robot is in the sequence of LRRLRRL. The reason for not adopting units with the 
same chirality (LLLLLLL or RRRRRRR) is to prevent the rolling motion. Assembling units with alternating 
chirality helps with stability during movement. However, fully alternating designs like LRLRLRL or RLRLRLR 
end up with active units in the combination of RRR or LLL, which is also not ideal for canceling the relative 
rotation. As a result, the design of LRRLRRL or RLLRLLR makes the whole robot symmetric and the active 
units in alternating chirality (RLR or LRL). 
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Fig. S1. Kresling origami design. (A) Three origami designs consisting of octagon, hexagon, and square 
shapes on top and bottom planes. Illustration of the Kresling units in three deformed configurations, i.e., 
deployed (first row), folded (second row), and bended (third row), respectively. The fourth row shows the 
origami crease patterns. All geometric parameters are listed in Table S2. (B) Top view of the units in the 
deployed state. (C) 1: Force applied on the top plane of the origami unit versus vertical displacement of any 
vertices on the top plane. 2: Stored strain energy of the unit versus vertical displacement. 3: Strain energy 
versus bending angle (zoom-in view of 5). 4: Height difference between the two opposite edges on the top 
plane versus bending angle. 5: Strain energy versus bending angle. 6: Twisting angle of the top plane 
versus bending angle. 
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Fig. S2. (A) Kresling pattern design with dimensions labeled (Unit: mm). (B) AgNW heater design with 
dimensions labeled (Unit: mm).  
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Fig. S3. Strain/temperature relationship of the synthesized LCE film. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

8 
 

 
 
Fig. S4. Theoretical prediction of the bimorph bending performance of the AgNW soft actuator. Theoretical 
and experimental maximum curvature with respect to (A) thickness ratio 𝑡!/𝑡$; (B) Young’s modulus ratio 
𝐸!/𝐸$; and (C) temperature increase. (D) Experimental relationship between the folding angle and the local 
curvature at the crease line. 
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Fig. S5. The folding angle and corresponding resistance change of the AgNW heater (with 10 on/off cycles 
of 0.125 A). 
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Fig. S6 (A) Mechanical testing setup for measuring the force-displacement relationship of a Kresling unit 
(two opposing side panels replaced with soft actuators). (B) Relationship between force and displacement. 
(C) Relationship between output force and applied current. The output force is derived from (B) and the 
relationship between the unit height change and applied current, provided in Fig. 3G.  
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Fig. S7 (A) Schematics of the soft robot in one cycle of forward motion. (White: passive units; Yellow: 
active units. Pink: active units deploying; Red: active units folding) (B) Snapshots of the Kresling robot on 
various surfaces (synthetic leather, marble, and nylon). (C) Experimental setup for measuring the static 
coefficient of friction. (D) The coefficient of friction between PET (the material used for constructing the 
Kresling robot) and synthetic leather, marble, and nylon.  

 

 

 



 
 

12 
 

 

Fig. S8. Reduced-order modeling for a Kresling unit. (A) Schematic of the reduced order model involving 
both boundary conditions and loading conditions. (B) The stored strain energy of the Kresling unit versus 
the vertical displacement of any vertices on the top octagon plane. The strain energy (U/AER) and the 
displacement (u/R) are normalized (where E represents the material Young’s modulus, A is the cross-
section area of the bars, and R denotes the circumradius of the octagon). Multiple colored lines represent 
the solution considering a range of stiffness 𝑘(XXX from 0 to 4 × 10#$ N mm(rad mm)-1. The black dot denotes 
the position of the stable states. 
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Table S1. Comparison between this work and reported soft locomotive robots. 

 

 

 

 

 

 

 

 

 

SI Ref. Actuation 
Mechanism 

Locomotion 
Type 

Locomotion 
modes 

Actuation 
time (s) 

Locomotion 
Speed 

(4) Pneumatic Multi-gait legged Forward / 
6.67 mm/s 

0.053 body lengths 
per second (BL/s) 

(5) Pneumatic Kirigami-skin Forward / ~3.36 mm/s 
~0.0205 BL/s 

(6) Humidity Inching Forward 0.3  0.575 mm/s 

(7) Humidity Inching Forward 2 6 mm/s 
 0.24 BL/s 

(8) Dielectric Inching Forward 0.1 1.03 BL/s 

(9) Dielectric Inching Forward + Backward / 7.8 mm/s 
0.137 BL/s 

(10) Magnetic Inching Forward + Backward 0.9 34 mm/s  
0.56 BL/s 

(11) Magnetic Inching Forward + Steering 0.2 13.2 mm/s 

(12) Magnetic Multi-gait legged Forward + Backward 
+ Rigid-body Steering 0.035 ~12 mm/s 

(13) Photothermal Crawling (Peristaltic) Forward + Backward 1.67 0.24 mm/s 
0.0162 BL/s 

(14) Photothermal Inching Forward + Steering / 0.33 mm/s 
0.067 BL/s 

(3) Electrotherm
al Inching Forward + Backward 12  0.72 mm/s 

0.012 BL/s 

This 
work 

Electrotherm
al Crawling (Peristaltic) Forward + Backward 

+ Continuous Steering 11 0.195 mm/s 
0.00476 BL/s 
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Table S2. Geometry parameters of the Kresling origami units. 

𝑛 𝐻! (mm) 𝐻" (mm) 𝑏 (mm) 𝜓! 𝜓" 𝑎 (in) 𝛾 
8 20.9 6.3 13.9 48.3° 86.7° 25.3 113° 
6 20.9 6.3 18 39.4° 80.6° 24.1 109° 
4 20.9 6.3 25.4 19.5° 70.5° 21.6 99° 

 

 

 

  



 
 

15 
 

Table S3. Pseudo-code of the nonlinear solution scheme 

Algorithm Incremental-iterative nonlinear solution scheme. 

1: Set 𝒖"! ← 0, 𝜒"! ← 0, 𝑢*,! ← 0, 𝑘 ← 0 for Initialization. 

2: while 𝑢*,		/ < 𝑢* do 

3:       𝑘 ← 𝑘 + 1,  𝑗 ← 0 

4:       while |𝛿𝒖./| > 𝑡𝑜𝑙 do 

5:           𝑗 ← 𝑗 + 1 

6:           Compute internal forces, stiffness matrix: 𝑻.#!/ ← 𝑻P𝒖.#!/ R,  𝑲.#!/ ← 𝑲P𝒖.#!/ R 

7:           Compute residual vector: 𝒓.#!/ ← 𝜒.#!/ 𝒇" − 𝑻.#!/  

8:           Solve 𝑲.#!/ 𝛿𝒖𝒇!.
/ = 𝒇", and 𝑲.#!/ 𝛿𝒖𝒓.

/ = 𝒓.#!/  

9:           Determine 𝛿𝜒./  

10:         𝛿𝒖./ ← 𝛿𝜒./𝛿𝒖𝒇!.
/ + 𝛿𝒖𝒓.

/  

11:         Obtain iterative updates: 𝒖./ ← 𝒖.#!/ + 𝛿𝒖./,  𝜒./ ← 𝜒.#!/ + 𝛿𝜒./  

12:     end while  

13:     𝑢*,		/ ← 𝒇"
𝑻𝒖./  

14: end while  
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Movie S1. Kresling Origami Unit: folding/unfolding and controlled bending. Axial folding and unfolding of 
the Kresling origami unit with 6.25 V on both integrated actuators; controlled bending of the Kresling origami 
unit with 6.25 V on one actuator and 0 V on the other actuator. 

Movie S2. Forward and backward locomotion of the Kresling soft robot by programmed actuation. 

Movie S3. 8 cycles of the Kresling soft robot in steering motion by programmed actuation.  

Movie S4. The Kresling soft robot following an S-shaped trajectory by programmed actuation. 

Movie S5. Demonstration of an APA module picking up cargo, assembling with a PAP module, and enabling 
steering functionality. 
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