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Supporting Information Text

1. Dihedral angle relationships

In this section, we derive the relationships between the dihedral angles around one node of the “folded kirigami” unit cell. We
consider the equilateral-triangular unit cell in Fig. S1A. To simplify the formulation, we apply 3-fold rotational symmetry so
that the folding process involves one degree of freedom. Consequently, we have three dependent dihedral angles: the angle θ
between the base and a wing, the angle ξ between a wing and a flap, and the angle φ between two flaps. We draw an auxiliary
sphere centered at the node. The sphere intersects with the unit cell, forming a spherical 5-gon (the blue curves in Fig. S1A).
The sector angle α is the interior angle of the base equilateral triangle; β is the interior angle of a flap; and the interior angle of
a wing is π/2. The magenta spherical triangle (of side lengths β̃, β̃, and γ) is constructed by extending the two sides of length
π/2 and closing the third side with the geodesic line. The dihedral angles are illustrated in Fig. S1B, including θ, ξ, and φ and
more that we need in the following formulation. First, we apply spherical cosine rules to the spherical triangle of side lengths α,
β̃ + π/2, and β̃ + π/2:
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(
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Equation (1) leads to
β̃ = − arctan

(
cot α

2 cos θ
)

. [3]

Equations (2) and (3) lead to
φ̃ = 2 arccos

(
cos α

2 sin θ
)

. [4]

Then, we apply spherical cosine rules to the spherical triangle of side lengths γ, β̃, and β̃:

cos γ = (cos β̃)2 + (sin β̃)2 cos φ̃, [5]

and to the spherical triangle of side lengths γ, β, and β:

cos γ = (cos β)2 + (sin β)2 cos φ. [6]

Equations (3)–(5) lead to

γ = −2 arcsin
(

cos α

2 cos θ
)

. [7]

Notice that we have the relationship
β = π − α

2 . [8]

Equations (6)–(8) lead to
φ = 2θ − π . [9]

Again, we apply spherical cosine rules to the spherical triangle of side lengths γ, β, and β:

cos β = cos β cos γ + sin β sin γ cos η, [10]

and to the spherical triangle of side lengths γ, β̃, and β̃:

cos β̃ = cos β̃ cos γ + sin β̃ sin γ cos η̃. [11]

Equations (8) and (10) lead to
η = arccos

(
tan α

2 tan γ

2

)
. [12]

Equations (3), (7), and (11) lead to

η̃ = arccos
(

− sin α cos θ

sin γ

)
. [13]

Notice that we have the relationship
ξ = π − (η − η̃). [14]

Finally, Eqs. (12)–(14) lead to

ξ = π − arccos
(

tan α

2 tan γ

2

)
+ arccos

(
− sin α cos θ

sin γ

)
. [15]

According to Eqs. (7), (9), and (15), we know that the dihedral angles φ and ξ are dependent on the dihedral angle θ. In the
above derivation, we only use the local information—side lengths and angles meeting at the specific node, including the local
interior angle of the base triangle α = π/3. The global shape of the base triangle does not affect the results. Therefore, the
formulation can be directly applied to the square unit cell by simply setting α = π/2 (Fig. S1C ), or to general irregular convex
polygons with the corresponding value of α.
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2. Formulation on kagome “folded kirigami”

In this section, we formulate node positions on the crease-slit patterns of the kagome “folded kirigami.” Specifically, we consider
the kagome kirigami with two repeating constituent triangles (Fig. S2A, Left). Consistent with the kagome kirigami pattern,
the crease-slit pattern of the “folded kirigami” is also composed of two repeating patches (Fig. S2A, Right). We denote the side
lengths of the two triangles by ai, bi, and ci for i = 1 and 2. Then, the interior angles αi, βi, and γi can be calculated by the
cosine rules:

αi = a2
i + c2

i − b2
i

2aici
,

βi = a2
i + b2

i − c2
i

2aibi
,

γi = b2
i + c2

i − a2
i

2bici
,

[16]

for i = 1 and 2. On the kagome kirigami pattern, we denote the twist angles between one triangle and its three neighbors by θ,
ξ, and η (Fig. S2B). Considering the translation symmetry of the kirigami pattern, the three twist angles are dependent on
each other:

ξ = α1 − β2 + θ,

η = α2 − γ1 + θ.
[17]

On the crease-slit pattern of the “folded kirigami,” the twist angles are equally distributed to the adjacent patches (Fig. S2B).
To formulate the node positions on the repeating patches, we build up local coordinate systems as shown in Fig. S2C. Our goal
is to give position vectors of all the nodes Ai, Bi, Ci, Aij , Bij , and Cij for i = 1 and 2, and j = 1, 2, ..., 6, such that the whole
crease-slit pattern can be easily obtained by translating the repeating patches. Recall that, for given base triangles, the node
positions are dependent on two parameters—width of the rectangular wings h and residual side length of the truncated flaps
s (see Fig. S1A for the wings and flaps). Since the flaps are meant to be folded and attached to the wings for the “folded
kirigami,” the residual side length s should not be larger than the lengths of the wings (i.e., ai, bi, ci). Moreover, the residual
side length s should not be larger than the length of any flap before truncation (i.e., h/ tan(αi/2), h/ tan(βi/2), h/ tan(γi/2)).
Altogether, we have the following constraint:

s ≤ min
{

ai, bi, ci,
h

tan(αi/2) ,
h

tan(βi/2) ,
h

tan(γi/2)

∣∣∣∣ i = 1, 2
}

. [18]

In practice, we can specify s by its maximum value to make the truncated flaps as large as possible, such that the folding and
attaching process can be easier. We denote the common edge lengths of adjacent flaps by pi, qi and ri, which can be calculated
by

pi = s

sin(π/2 − αi/2) ,

qi = s

sin(π/2 − βi/2) ,

ri = s

sin(π/2 − γi/2) ,

[19]

for i = 1 and 2. We denote the normal vectors of the base triangle edges by li, mi, and ni, which can be expressed as

li = (0, −1),
mi = (sin βi, cos βi),
ni = (− sin αi, cos αi),

[20]

for i = 1 and 2. The node positions on the base triangles are given by

−→
Ai = (0, 0),
−→
Bi = (ai, 0),
−→
Ci = (ci cos αi, ci sin αi),

[21]
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for i = 1 and 2. Finally, we can write the rest of the position vectors:
−→
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[22]
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for i = 1 and 2.
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Fig. S1. Spherical geometry of unit cells of the “folded kirigami.” (A) The equilateral-triangular unit cell. (B) Geometric notations of the sector angles and dihedral angles. (C)
The square unit cell.

Xiangxin Dang, Stefano Gonella and Glaucio H. Paulino 5 of 11



A

B

θ

ξ η

η

θ

ξ

α1

β1

γ1

α2 β2

γ2

θ
ξ

η

2
2

2

η
2

θ
2

ξ
2

A1

x

y

B1

C1

A12

A11

A13

A16
A15

A14

B11

B12

B13

B16

B15B14

C11

C12

C13

C16

C15

C14

x

y

A2 B2

C2

A22

A21

A23(A25, A26)
A24 B21

B22

B23

B26

B25

B24

C21

C22

C23

C26
C25

C24

a

b

c

1

1

1

a

b
c

2

2

2

α1

β1

γ1
α2 β2

γ2

C

h

h
h

h

h

h

h

h

h

h h

h

s

s

s

s
s

s

ξ
2

η
2

θ
2

η
2

θ
2

ξ
2

p
1

q1

r1

s

s

s

s

s

s

p
2

q
2

r2

l 1

m1

n1

l 2

m2

n2

a1

b1

c1

b
c

2

2

a2

Fig. S2. Irregular kagome “folded kirigami” with two repeating constituent triangles. (A) Original kagome pattern (Left) and the corresponding crease-slit pattern for the “folded
kirigami” (Right). (B) Two constituent triangles in the original pattern and the crease-slit pattern, respectively. (C) Repeating patches in the crease-slit pattern.
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Fig. S3. Rotating-square “folded kirigami.” (A) Crease pattern for a square prism and its folding sequence. (B) Variation curves of dihedral angles. (C) Crease-slit pattern and
its folded configurations of the rotating-square “folded kirigami” with a single loop. (D) Unfolded paper sheet with perforated cuts and engraved creases (Left) and its folded
configurations (Right) of the rotating-square “folded kirigami” with multiple loops. (Scale bars, 3 cm.)
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A B

C

Fig. S4. Home-made experimental appliances for (A) the compression tests of the polarized configuration of the irregular kagome “folded kirigami,” (B) the compression tests of
the non-polarized configuration of the irregular kagome “folded kirigami,” and (C) the compression and tension tests of the square-rhombus “folded kirigami.” (Scale bars, 5 cm.)
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Fig. S5. Quasi-static twisting and bending tests for rotating squares made by “folded kirigami” and 3D printing approaches. (A) Experimental setup for the twisting (in-plane
rotation) tests. (B) Experimental curves of torque T versus twisting angle θ. (C) Experimental setup for the bending (out-of-plane compression) tests. (D) Experimental curves
of force F versus displacement u. The insets show the end of the experiments. Notice that the 3D printed configurations display zero force at the end of the experiment (red
and blue circles) while the “folded kirigami” still displays a finite reaction force (the black circle). The latter test stops at the black circle because of the contact between the
prototype and the bottom surface). The dashed lines in (B) and (D) represent linear regression of the experimental data. The “folded kirigami” is made of craft paper (Canson
Colorline, 150 g/m2). The 3D printed prototypes are made of Vero photopolymers for the cubes, and digital materials (mixed Vero and Elastico photopolymers, Shore-A 50) for
the hinges. We used the 3D printer Stratasys J55 Prime. The stiff hinge is a cuboid of size 1×1×20 mm3. The soft hinge is an array of ten tiny cubes of size 1×1×1 mm3

each. The loading rate is 1 deg/s for the twisting test and 5 mm/min for the bending test.
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Table S1. Area shrinkage from the flat pattern to the stereoscopic “folded kirigami”

Pattern Area shrinkage

1. Regular kagome 88.9%
2. Rotating-square 88.9%
3. Irregular kagome 89.9%
4. Square-rhombus 83.8%
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Movie S1. Deployment of regular kagome “folded kirigami”

Movie S2. Crease-slit patterns for kagome “folded kirigami”

Movie S3. Deployment of rotating-square “folded kirigami”

Movie S4. Compression tests of polarized & non-polarized kagome “folded kirigami”

Movie S5. Mechanical testing of non-reciprocal square-rhombus “folded kirigami”
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