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Abstract
Traditional topology optimization methods only consider a limited number of loads in the optimization procedure, neglecting 
load variations common in real-world scenarios. To incorporate real load scenarios, robust topology optimization considers 
uncertainties in load directions while minimizing compliance, generating structures capable of withstanding variations in 
the load. This paper incorporates the angles of the load directions as parameters into the optimization formulation to design 
structures that perform well under a range of load directions. Additionally, the formulation is extended to incorporate local 
volume constraints to balance the solution distribution throughout a domain, achieving more complex designs with proper 
material distribution as the angle of the loads and the number of sub-regions increases while maintaining consistency in the 
worst-case scenario. Two and three-dimensional examples demonstrate that topology-optimized designs are susceptible to 
loads that vary in direction and magnitude, and by considering realistic loading conditions, this formulation yields robust, 
reliable designs, markedly enhancing their suitability for actual engineering applications.
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1  Introduction

Topology optimization is a powerful technique used to 
determine the optimal distribution of material within a 
given design domain to achieve desired structural perfor-
mance objectives. One important objective in topology 
optimization is minimizing compliance, i.e., maximizing 
the stiffness of the structure. Traditionally, optimization 
approaches have focused on a limited set of load direc-
tions (Diaz and Bendsøe 1992; Lopes et al 2015; Picelli 
et al 2018; Lee et al 2012; Talischi et al 2012; Senhora 
et al 2022), addressing uncertainties of actual structural 
engineering applications such as stress (Senhora et  al 
2020; Giraldo-Londoño and Paulino 2020), eigenmodes 
(Li and Khandelwal 2017; Allaire and Michailidis 2018), 
fatigue (Holmberg et  al 2014; Jeong et  al 2015), and 
buckling (Deng and Suresh 2017; Ferrari and Sigmund 
2019). However, actual structural engineering applications 
are subjected to more complex conditions such as time-
dependent loading (Yun and Youn 2017), kinematic cou-
plings (Jin and Zhang 2016), load transmission (Lu et al 
2021), and variable boundary conditions (Sá et al 2022). 
In this work, we focus on load variation and uncertainties 
that are handled by considering multiple load directions in 
the topology optimization formulation leading to designs 
that exhibit improved resistance to realistic loading sce-
narios when compared to designs obtained with traditional 
optimization formulations. Previous works have explored 
various approaches to address the challenge of load uncer-
tainty by implementing stochastic or worst-case-oriented 
deterministic methods (Ben-Tal and Nemirovski 2002).

Stochastic methods treat the load as a random variable 
with a known probability distribution, and the objective 
and/or constraints of the optimization problem are repre-
sented as probabilities. These methods have been exten-
sively applied to compliance-based topology optimization 
problems. The uncertainties of loads incorporated in the 
optimization process can be related to location (Liu and 
Wen 2018; Wang and Gao 2020; Dunning et al 2011), 
boundary conditions (Guo et al 2013), and nodal varia-
tions (Guest and Igusa 2008; Yi et al 2013). Other uncer-
tainties are related to geometry (Zhang and Kang 2017; 
Lazarov et al 2012), material and stiffness (Asadpoure 
et al 2011; Jalalpour et al 2013). Li et al (2014) propose a 
compliance-volume product that considers the compliance 
(structural stiffness) and volume objectives, their method 
balances structural performance and material usage. Zhou 
and Li (2006) propose an approach for structures subjected 
to multiple load cases using a fiber-reinforced composite 
material model, which considers the anisotropic behavior 
of composite materials, and the load uncertainty is incor-
porated in the structure’s stiffness. Tootkaboni et al (2012) 

introduce an approach that employs polynomial chaos 
expansions to model uncertainties. James et  al (2009) 
introduce a dynamic aggregation technique that efficiently 
combines the load cases into a single equivalent load, sim-
plifying the optimization process. Liu et al (2011) present 
the guide-weight method, which utilizes guide weights to 
distribute the loads and optimize the structure’s response 
under multiple loading conditions by implementing mul-
tiple constraints in the formulation. Rong et al (2017) pro-
pose a method that optimizes structural topology while 
satisfying displacement constraints. da Silva Smith (1997) 
propose a heuristic method incorporating local stability 
constraints into the optimization process.

Worst-case-oriented methods involve solving an optimi-
zation problem within a set of potential load cases defining 
the objective and/or constraint function using the worst-case 
scenario. For minimization problems, this method provides 
an upper bound for the objective function and ensures the 
satisfaction of constraints for any load case within the set of 
possibilities. Young et al (1999) and Xie and Steven (1994) 
use an optimization approach and consider multiple load 
cases with stress constraints by using a finite-element analy-
sis for each load case. Csébfalvi (2018) address uncertainty 
in load directions through an iterative approach. Holmberg 
et al (2017) propose a game theory-based approach consider-
ing variations in load direction. Thore et al (2020) model the 
problem as a Stackelberg game instead of a zero-sum game 
and demonstrated that this interpretation ensures the exist-
ence of a solution. Recently, Senhora et al (2023) make use 
of the linear state equations and the bi-linear characteristics 
of the von Mises stress to derive an analytical solution for 
the worst-case stress caused by continuously varying loads.

In contrast to the previous work by Senhora et al (2023) 
that focused on the stress constraint problem, this work uses 
linear state equations and the bi-linearity of the compliance 
function to obtain the solutions for the worst-case scenarios 
due to the continuously varying loads in the compliance 
minimization problem. The load-varying cases contemplated 
in this work are planar loads varying in magnitude and in a 
limited range of directions (Sect. 3.1), planar loads varying 
in direction combined with fixed loads (Sect. 3.2), two or 
more planar loads varying independently (Sect. 3.3), and 
loads varying in three dimensions (Sect. 3.4). The minimiza-
tion of compliance is formulated considering the load vari-
ation in a worst-case-oriented approach. Furthermore, the 
formulation is extended to include local volume constraints, 
aiming to achieve a more balanced distribution of solutions 
across the domain and thereby enabling the creation of intri-
cate designs with appropriate material distribution.

This paper is organized as follows: Sect. 2 presents the 
formulation of the minimization of compliance consider-
ing the variation of the load directions. Section 3 describes 
the aforementioned multiple load direction framework with 
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the derivations of the proposed analytic solutions for worst-
case compliance. Section 4 extends the previously described 
method considering multiple sub-regions. Section 5 provides 
numerical examples obtained with the proposed method, and 
Sect. 6 presents the concluding remarks. Finally, the Appendix 
provides the convergence plots for selected numerical results.

2 � Formulation

The compliance minimization optimization problem consider-
ing multiple load directions is stated as follows:

where f (z,�) is the compliance, z is the vector of design 
variables representing the material density at each point in 
the domain, and � denotes the angular variation of the load-
ing, u(z,�) is the displacement vector, K(z) is the stiffness 
matrix, gV (z) is the volume constraint and Ne is the number 
of elements. The linear state equation, K(z)u(z,�) = F(�) , is 
employed, which right-hand side varies with the load angle, 
�.

The stiffness of the elements is defined based on an ele-
ment-based density approach using the Solid Isotropic Mate-
rial with Penalization (SIMP) method (Bendsøe and Sigmund 
1999; Bendsøe and Kikuchi 1988), and the stiffness matrix is 
composed as follows:

where ke are the element stiffness matrices, 
Ne

�
e=1

 is the symbol 
that represents the assembly process of the global stiffness 
matrix, � represents the Ersatz stiffness that prevents the 
stiffness matrix from becoming singular due to void regions, 
p is the SIMP penalization parameter that penalizes inter-
mediate densities, k0 is the stiffness matrix for a solid ele-
ment and 𝜌̃ is the physical density vector obtained by first 
applying a boundary-corrected polynomial filter (Senhora 
et al. 2023) as follows:

and

(1)

min
z∈�

max
�∈�

f (z,�) = F
T (�)u(z,�)

s.t. gV (z) ≤ 0

0 ≤ ze ≤ 1, e = 1,… ,Ne

with ∶ K(z)u(z,�) = F(�)

(2)
K(z) =

Ne

�
e=1

ke

with ∶ ke = [𝜖 + (1 − 𝜖)𝜌̃p
e
]k0

(3)

Pij =
wijvj

�i

with ∶ wij = max

�
0,

�
1 −

‖xi − xj‖2
r

��s

where Condition (I) is used if the element is less than the 
distance r from a boundary (load or support) assigned to it; 
otherwise, Condition (II) is used. Here, r is the filter radius, 
s represents the order of the filter (we employed s = 1 ), and 
‖xi − xj‖2 is the distance between the centroids of the ele-
ments i and j. This filter effectively mitigates the bound-
ary bias within the domain by implicitly functioning as a 
filler for empty elements, eliminating the need to explicitly 
introduce an outer layer of fill elements. Then, we apply the 
smooth Heaviside projection (Wang et al 2011) as follows:

where � = 0.5 is the value of the threshold for the Heaviside 
function, � controls the sharpness of such function, and P 
is the filter matrix that is computed applying the boundary-
corrected polynomial filter.

3 � Multiple load directions

In the topology optimization domain, the direction of the loads 
applied is represented by a variable � ∈ �  , which represents 
the angle of the load in a set �  of all possible angles. The solu-
tion of the worst-case scenario is represented by the maximum 
compliance of all possible angles, � ∈ �  , and can be stated as 
an optimization problem:

The solution of the worst-case compliance is the critical 
angle, �cr . The following sections address the solution for 
the problem in Eq. 6 considering different sets of admissi-
ble load angles. For more information on the derivations of 
the worst-case approach in a stress-constrained setting, see 
Senhora et al (2023).

3.1 � Case #1: planar load varying in an arbitrary 
range

This case considers a single load varying in direction within 
a limited range of angles, � ∈ [�low, �upp] , contained in the 
interval [−�,�] . The load is represented as the sum of two 
vectors weighted by cosine and sine functions:

(4)�i =

⎧
⎪⎪⎨⎪⎪⎩

Ne�
k=1

wikvk, (I)

max

�
Ne�
k=1

wmkvk�m = 1,… ,Ne

�
, (II)

(5)𝜌̃ = H(Pz) =
tanh(𝛽𝜂) + tanh(𝛽(Pz − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

(6)
max
�∈�

f (z,�)

with ∶ K(z)u(z,�) = F(�)
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where Fx and Fy are two linearly independent load basis vec-
tors, which compose the space of admissible loads and are 
not necessarily aligned with any of the planar axes or have 
the same magnitude, as shown in Fig. 1.

As part of the algebraic manipulation, Eq. 7 is used in 
the equilibrium equation:

Let’s define ux and uy as follows:

Such that, the compliance is computed as:

The quadratic compliance terms are defined as:

Which are replaced in Eq. 10:

This equation is simplified using trigonometric identities:

The optimization problem for the critical load angle is writ-
ten as follows:

The compliance in Eq. 13 is differentiated and set equal to 
zero, which leads to the following solution:

(7)F(�) = Fx cos(�) + Fy sin(�)

(8)
u(z,�) = K

−1(z)F(�)

= (K−1(z)Fx) cos(�) + (K−1(z)Fy) sin(�)

(9)ux = K
−1(z)Fx, uy = K

−1(z)Fy

(10)
f (z,�) = [ux cos(�) + uy sin(�)]

T
K(z)[ux cos(�) + uy sin(�)]

(11)txx = u
T
x
K(z)ux, tyy = u

T
y
K(z)uy, txy = u

T
x
K(z)uy

(12)f (z,�) = txx cos
2(�) + tyy sin

2(�) + 2txy cos(�) sin(�)

(13)
f (z,�) = 0.5[(txx − tyy) cos(2�) + txx + tyy] + txy sin(2�)

(14)
max
�∈�

f (z,�)

with ∶ K(z)ux = Fx, K(z)uy = Fy

To generalize this solution for any angle range, first, we 
rotate the basis vectors Fx and Fy by an angle (�low + �upp)∕2 
so that Fx lies in the middle of the interval [�low, �upp] and 
�r = (�upp − �low)∕2 , as shown in Fig. 2. Thus, the solution 
of Eq. 14 is:

If we get a solution that satisfies the compliance for a 
range of [−�r, �r] , then the solution will also satisfy the com-
pliance for (� + �) , in which � ∈ [−�r, �r] . This is known as 
the secondary range of admissible load angles (Senhora et al 
2023), which occurs because the state equations are linear, 
and the compliance is a bilinear function. Notice that if we 
replace � by (� + �) in Eq. 13, we obtain:

since cos(2� + 2�) = cos(2�) and sin(2� + 2�) = sin(2�) , 
the expression in Eq. 17 is numerically equivalent to the 
expression in Eq. 13.

3.2 � Case #2: planar load varying 360◦ plus a fixed 
load

This case considers a load varying 360◦ and a fixed load 
that does not vary in direction. The loads are represented as:

where Ff  is the load basis vector related to the fixed load. 
The schematic of this load case is presented in Fig. 3.

Let’s define uf = K
−1
Ff  , together with the extra quadratic 

compliance terms:

(15)�∗ = �cr =
1

2
tan−1(2txy, txx − tyy)

(16)

�∗ = �cr = min

{
max

[
1

2
tan−1(2txy, txx − tyy),−�r

]
, �r

}

(17)
f (z,�+ �) = 0.5[(txx − tyy) cos(2� + 2�) + txx

+ tyy] + txy sin(2� + 2�)

(18)F(�) = Fx cos(�) + Fy sin(�) + Ff

θ

Fig. 1   Case # 1: domain of possible load cases (F, blue region) and 
the load basis vectors ( Fx and Fy ). When ‖Fx‖ ≠ ‖Fy‖ , as a general 
case, an ellipsoid domain is generated, and when ‖Fx‖ = ‖Fy‖ , as a 
particular case, a circular domain is generated

θ +  θ 
θ 

θ 
θr=  θ  θ 

Fig. 2   Rotation of the basis vectors ( Fx and Fy ) for any continuous 
range of admissible angles
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Similarly to Case #1 (Sect. 3.1), the compliance is obtained 
as follows:

To simplify the expression in Eq. 20 we apply the Weier-
strass variable substitution (Spivak 1965):

Which leads to the polynomial expression:

The optimization problem for the critical load angle is:

To get the solution to the problem in Eq. 23, we differenti-
ate the objective function with respect to the optimization 
variable (u) as follows:

where u∗ are the roots of the fourth-degree polynomial in 
Eq. 24, and the solution is the one that gets the maximum 
value of compliance.

(19)tff = u
T
f
K(z)uf , txf = u

T
x
K(z)uf , tyf = u

T
y
K(z)uf

(20)

f (z,�) = txx cos
2(�) + tyy sin

2(�) + tff

+ 2txy sin(�) cos(�) + 2txf cos(�) + 2tyf sin(�)

(21)sin(�) =
2u

1 + u2
, cos(�) =

1 − u2

1 + u2

(22)
f (z, u(�)) =

1

(1 + u2)2

[
tff + 2txf + txx + 4(tyf + txy)u

+ 4(tyf − txy)u
3 + 2(tff + 2tyy − txx)u

2
]

(23)
max
u∈R

f (z, u(�))

with ∶ K(z)ux = Fx, K(z)uy = Fy , K(z)uf = Ff

(24)

�f (z, u(�))

�u
=

4(txy + tyf ) + 4(txy − tyf )u
4

(1 + u2)3

+
8(tyy − txx − txf )u − 24txyu

2

(1 + u2)3

+
8(txx − tyy − txf )u

3

(1 + u2)3
= 0

3.3 � Case #3: multiple independent loads 
with varying angles

This case considers several loads varying independently 
of each other, and the variable that controls the angle of 
the loads, � , is a vector in [−�,�]n , where n is the number 
of loads, and each component of this vector controls the 
angle of the various loads. First, the problem is solved 
by considering two loads with two independent angles 
(n = 2) , and then the solution is generalized for n-number 
of loads. For the particular case n = 2 , the loads are rep-
resented as:

where

Notice that F1 and F2 are the load components that vary in 
direction with �1 and �2 , respectively. The schematic of this 
load case is presented in Fig. 4.

Let’s define u1x , u1y , u2x and u2y as follows:

As well as the following quadratic compliance terms:

Similarly to the previous cases, by making use of trigono-
metric identities, the compliance is rewritten as follows:

(25)F(�) = F1(�1) + F2(�2)

(26)
F1(�1) = F1x cos(�1) + F1y sin(�1)

F2(�2) = F2x cos(�2) + F2y sin(�2)

(27)
u1x = (K−1

F1x), u1y = (K−1
F1y)

u2x = (K−1
F2x), u2y = (K−1

F2y)

(28)

t1xx = u
T
1x
K(z)u1x, t1yy = u

T
1y
K(z)u1y

t2xx = u
T
2x
K(z)u2x, t2yy = u

T
2y
K(z)u2y

t1xy = u
T
1x
K(z)u1y, t2xy = u

T
2x
K(z)u2y

sxx = u
T
1x
K(z)u2x, syy = u

T
1y
K(z)u2y

sxy = u
T
1x
K(z)u2y, syx = u

T
1y
K(z)u2x

θ

Fig. 3   Case # 2: domain of possible load cases (F, blue region), the 
load basis vectors ( Fx and Fy ) for the varying load and the fixed load 
( Ff  , red). When ‖Fx‖ ≠ ‖Fy‖ , as a general case, an ellipsoid domain 
is generated, and when ‖Fx‖ = ‖Fy‖ , as a particular case, a circular 
domain is generated

θ1 θ2

Fig. 4   Case # 3: domain of possible load cases ( F
1
 , blue region and 

F
2
 , green region) and the load basis vectors ( F

1x , F1y , F2x and F
2y ). 

When ‖F
1x‖ ≠ ‖F

1y‖ or ‖F
2x‖ ≠ ‖F

2y‖ , as a general case, an ellipsoid 
domain is generated, and when ‖F

1x‖ = ‖F
1y‖ or ‖F

2x‖ = ‖F
2y‖ , as a 

particular case, a circular domain is generated
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Then, the corresponding optimization problem for the criti-
cal load angle is:

To solve the optimization problem, the expression of the 
compliance in Eq. 30 is decomposed into three parts to get 
an analytic upper bound caused by the combined loads, i.e.

Notice that the maximum sum of these terms is less than 
or equal to the sum of the maximum of each term. Thus, an 
upper limit is defined, consisting of the sum of the maximum 
of each term:

The expressions for T1 and T2 are similar to Eq. 13. Thus, the 
solution of each expression is:

To get the solution for the T12 term, it is separated into two 
terms:

Each term depends only on u = �1 + �2 and v = �1 − �2 , 
respectively, such that:

(29)

f (z,�) =t1xy sin(2�1) + 0.5(t1xx + t1yy)

+ 0.5(t1xx − t1yy) cos(2�1)

+ t2xy sin(2�2) + 0.5(t2xx + t2yy)

+ 0.5(t2xx − t2yy) cos(2�2)

+ (syx + sxy) sin(�1 + �2)

+ (sxx − syy) cos(�1 + �2)

+ (syx − sxy) sin(�1 − �2)

+ (sxx + syy) cos(�1 − �2)

(30)

max
�∈�

f (z,�)

with ∶ K(z)u1x = F1x, K(z)u1y = F1y

K(z)u2x = F2x, K(z)u2y = F2y

(31)

T1 = 0.5[(t1xx − t1yy) cos(2�1) + t1xx + t1yy] + t1xy sin(2�1)

T2 = 0.5[(t2xx − t2yy) cos(2�2) + t2xx + t2yy] + t2xy sin(2�2)

T12 = (syx + sxy) sin(�1 + �2) + (sxx − syy) cos(�1 + �2)

+ (syx − sxy) sin(�1 − �2) + (sxx + syy) cos(�1 − �2)

(32)f (z,�∗) = T∗
1
+ T∗

2
+ T∗

12

(33)
�∗
1
=

1

2
tan−1(2t1xy, t1xx − t1yy)

�∗
2
=

1

2
tan−1(2t2xy, t2xx − t2yy)

(34)T12(u, v) = T12u(u) + T12v(v)

As usual, each expression in Eq. 35 is differentiated and set 
equal to zero, leading to the following solutions:

For the solutions presented in this case, the range of one 
or both load angles can be restricted similarly to Case #1 
(Sect. 3.1).

Let’s consider [−�1r, �1r] and [−�2r, �2r] as the range of 
admissible angles for �1 and �2 , respectively. Then, for each 
expression in Eq. 33, the solutions considering limited ranges 
are:

In addition, the admissible range for u and v can be con-
structed based on �1r and �2r as −[(�1r + �2r), (�1r + �2r)] for 
both u and v. Then, the solutions considering limited ranges 
are:

3.3.1 � Generalization for n ≥ 2

This approach can be generalized for an arbitrary number 
of loads represented by an arbitrary number of angles �i by 
defining an upper limit of the compliance as follows:

This expression is separated by considering the terms ( Ti ) 
that depend exclusively on �i , and the terms ( Tij ) between �i 
and �j , when i ≠ j.

(35)
T12u(u) = (syx + sxy) sin(u) + (sxx − syy) cos(u)

T12v(v) = (syx − sxy) sin(v) + (sxx + syy) cos(v)

(36)
u∗ = tan−1(syx + sxy, sxx − syy)

v∗ = tan−1(syx − sxy, sxx + syy)

(37)

�∗
1
= min

{
max

[
1

2
tan−1(2t1xy, t1xx − t1yy),−�1r

]
, �1r

}

�∗
2
= min

{
max

[
1

2
tan−1(2t2xy, t2xx − t2yy),−�2r

]
, �2r

}

(38)

u∗ = min

{
max

[
tan−1(syx + sxy, sxx − syy),

−(�1r + �2r)

]
, (�1r + �2r)

}

v∗ = min

{
max

[
tan−1(syx − sxy, sxx + syy),

−(�1r + �2r)

]
, (�1r + �2r)

}

(39)f (z,�) =

n∑
i=1

(
Ti +

n∑
j=i+1

Tij

)
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3.4 � Case #4: load varying in three dimensions

This case considers the loads in three dimensions in which 
the loads can represent a whole surface of possible load 
directions varying in a plane but also in out-of-plane direc-
tions. The three cases combine two or more loads that vary 
independently in direction with appropriate bases as illus-
trated by Fig. 5.

In the first case, two independent loads are combined 
with the basis that forms orthogonal planes, generating a 
spherical load surface, as shown in Fig. 5a. In the second 
case, unlike the previous case, one of the loads only varies 
in intensity from −Fx to Fx in a fixed direction, generat-
ing a cylindrical load surface, as shown in Fig. 5b. Finally, 
in the third case, the three loads only vary in intensity in 
fixed directions, generating a cubic load surface, as shown 
in Fig. 5c.

The solution of the cases consists of using the derivations 
of Case #3 (Sect. 3.3) and the generalization of the number 
of loads presented in Sect. 3.3.1, taking into account that the 
loads, composed as shown in Eq. 26, consider their compo-
nents as the loads presented in each orthogonal plane.

4 � Consideration of multiple sub‑regions

Incorporating local constraints in topology optimization 
involves imposing restrictions on the distribution of mate-
rial in specific regions, favoring the creation of redundant 
load paths. This approach ensures that even if one sec-
tion of the structure experiences a failure or damage, other 
parts can seamlessly bear the additional loads, preventing 
catastrophic consequences. Integrating local constraints in 
topology optimization not only bolsters structural redun-
dancy but also addresses safety concerns regarding struc-
tural integrity requirements not directly considered in the 
framework, such as variation of the load location, hetero-
geneity of material properties, or local failures (e.g. local 
buckling). This becomes particularly crucial in aerospace 
and civil engineering applications, where structural fail-
ures can have severe consequences.

We establish sub-regions of arbitrary geometries within 
the design domain to specify the local constraints by 
applying the k-means algorithm. This algorithm segregates 
the elements into a predetermined number of clusters of 
similar size. In this work, the clusters (sub-regions) are 
determined by the position of the centroid of each element. 
For example, Fig. 6 presents the Hook domain geometry 
with distinct elements grouped into sub-regions using the 
aforementioned k-means algorithm and a passive region 
defined around the support area.

To accommodate the multiple volume constraints and 
passive regions in the optimized formulation, we utilize 
the optimization algorithm developed by Sanders et al 
(2018) that employs the ZPR design variable update 
scheme (Zhang et al 2018). This scheme takes advantage 
of the separability of the dual sub-problem, enabling us 

Fig. 5   Case # 4: combination of loads varying independently in mag-
nitude and direction to get a load that varies in three dimensions. a 
Two independent loads that vary in magnitude and direction in 
orthogonal planes generate a spherical load surface. b Two independ-
ent loads in orthogonal planes, one varies in magnitude and direction, 
and the other varies just in magnitude, generate a cylindrical load sur-
face. c Three independent loads in orthogonal planes varying in mag-
nitude generate a cubic load surface
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to update the design variables independently for each 
constraint. Design variables within passive regions are 
not updated throughout the optimization and, as a result, 
remain unchanged after the initialization phase.

5 � Results

This section presents the numerical results of a MATLAB 
implementation of the formulations described in Sect. 3 for 
two-dimensional structures (Hook and Pier cap beam) and a 
three-dimensional structure (Bridge). The two-dimensional 
examples are developed using the MATLAB code Poly-
Top (Talischi et al 2012), varying the objective and sen-
sitivity functions according to each case. Similarly, in the 
three-dimensional example, we use linear hexahedral ele-
ments, which is consistent with the optimization framework 
based on linear elements (2D and 3D). For all examples, 
the Young’s modulus and Poisson’s ratio are E0 = 1 and 
� = 0.3 , respectively. In the optimization process, the stop-
ping criterion is either the maximum number of iterations 
or the convergence tolerance of 0.01 (whichever is reached 
first). Convergence plots for selected numerical results are 
provided in the Appendix.

5.1 � Hook

Figure  7 shows the Hook domain geometry, with a 
mesh that comprises 50,000 polygonal elements and a 

unitary distributed load, which can vary in angle (Case 
#1, Sect. 3.1). The optimization parameters are provided 
in Table 1.

5.1.1 � Hook with global volume constraint and varying 
loads

Figure  8 illustrates the designs obtained for the Hook 
domain considering one distributed load varying with an 
angle � for different ranges of admissible angle, �r . Notice 
that, as �r increases, the complexity of the design increases 
as well, with a tendency to concentrate material around the 
load region, in contrast to the standard case (Fig. 8c).

Figure 8c illustrates the standard case corresponding to 
the fixed downward load design ( � = −90◦ ). To provide 
context, we compare this solution with the Hook problem 
initially introduced by Talischi et al (2012) and optimized 
using PolyTop, as depicted in Fig. 8a. As expected, these 
solutions exhibit remarkable similarities due to their shared 
boundary conditions. Notable differences emerge primar-
ily from the filtering and Heaviside projection techniques 
employed in this work (Sect. 2). Furthermore, we extend the 
comparison to the Hook problem approached via a ground 
structure method using GRAND (Zegard and Paulino 2014), 
presented in Fig. 8b. Evidently, there is a qualitative agree-
ment between the solutions obtained through both methods.

In addition, when �r = 90◦ (Fig. 8g), the solution obtained 
for the worst-case scenario is �∗ = 79.4◦ , implying that the 
results will remain consistent for any �r greater than �∗ , as 
evidenced in Fig. 8h. As expected, the compliance increases 
as �r increases, as shown in Fig. 9.

To verify that the continuously varying load approach 
outperforms the traditional single fixed load approach when 
considering multiple load directions, Fig. 10a displays the 

Fig. 6   Schematic of the Hook domain geometry with multiple local 
volume constraints, considering sub-regions defined by applying the 
k-means algorithm and a passive region around the support area

θr

Fig. 7   Hook domain geometry and load conditions, corresponding to 
Case #1 (Sect. 3.1)
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compliance of the optimized designs considering a single 
fixed load for different load directions in comparison to the 
optimized design compliance considering a continuously 
varying load (Case #1, Sect. 3.1). That is, for each point 
of the red curve, we have a different design for a different 
fixed load direction, while the blue curve represents a single 
structure designed with a continuously varying load and how 
the compliance of this single structure varies with the load 
direction.

Furthermore, Fig. 10b shows that, despite the fixed load 
design having lower compliance around the load angles con-
sidered in their optimization, the compliance for fixed load 
cases quickly degenerates, contrary to the compliance of the 
continuously varying load structure, which remains stable, 
presenting a lower compliance overall. Therefore, the opti-
mized solution considering continuously varying load (Case 
#1, Sect. 3.1) can stand any variation in the load direction.

5.1.2 � Hook with local volume constraints and varying loads

As previously stated in Sect. 5.1.1, the solutions tend to 
concentrate material around the distributed load, as shown 
in Fig. 8. To get solutions with more evenly distributed 
material, the optimized formulation incorporates local vol-
ume constraints, as described in Sect. 4. Further, a passive 
region (dark region) with a 0.05 thickness is considered 
around the support region, as shown in Fig. 11a.

Figure 11 illustrates the design obtained for the Hook 
domain considering global and local volume constraints with 
varying numbers of sub-regions (16, 24, 30, 48, and 54) and 
a distributed load varying with an angle � for different ranges 
of admissible angle, �r . Notice that, as �r increases, the com-
plexity of the design increases for each case (sub-regions) 
as well. Also, as the number of sub-regions increases, the 
designs present a more even material distribution in the 

Table 1   Input parameters for the Hook domain problem

aThis parameter is used when considering local volume constraints

SIMP, penalty parameter p 1, 1.5, 
2, 3, 4, 
5, 6

Sharpness of Heaviside function, � 0.1
Material interpolation factor, �a 1
Filter radius, r 0.012
Filter exponent, s 1
Volume fraction limit 0.4
Maximum number of iterations
(per continuation step)

100

θ  є

θ є θ є

θ є

θ 

θ є

θ 

θ 

θ 

Fig. 8   Hook domain solutions considering one distributed load var-
ying in direction, corresponding to Case #1 (Sect.  3.1). a Standard 
case solution using PolyTop (Talischi et al 2012). b Standard case 
solution using GRAND (Zegard and Paulino 2014). c Optimized 
design for a fixed downward load ( � = −90◦ ). d Optimized design 
for an angle range �r = 15◦ . e Optimized design for an angle range 
�r = 30◦ . f Optimized design for an angle range �r = 60◦ . g Opti-
mized design for an angle range �r = 90◦ . h Optimized design for an 
angle range �r = 180◦

θ 

θr

Fig. 9   Hook domain compliance obtained for different ranges of 
admissible angles, �r , considering Case #1 (Sect. 3.1)
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θ θ θ
θ θ θ

⋕

θ

θ

Fig. 10   Plot of the compliance of the Hook domain optimized 
designs considering several loading scenarios. a Compliance of the 
optimized designs considering a single fixed load for different load 
directions in comparison to the optimized design compliance consid-
ering a continuously varying load (Case #1, Sect.  3.1). That is, for 
each point of the red curve, we have a different design for a different 
fixed load direction, while the blue curve represents a single structure 
designed with the continuously varying load (Case #1, Sect. 3.1) and 
how the compliance of this single structure varies with the load direc-

tion. b Compliance of the fixed load designs in a as the load varies 
in direction. Each dotted line in this plot represents a single structure 
optimized for a fixed load direction and how its compliance changes 
with the load direction. This plot shows that, despite the fixed load 
design having lower compliance around the load angles considered in 
their optimization, the compliance for fixed load cases quickly degen-
erates, contrary to the compliance of the continuously varying load 
structure, which remains stable, presenting a lower compliance over-
all
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θ є
θr

θ є
θr

θ є
θr

θ є
θr

θ

θ θ θ θ θ θ 

Fig. 11   Hook domain solutions considering global and local volume 
constraints with one distributed load varying in direction, correspond-
ing to Case #1 (Sect. 3.1). a Hook domain geometry distribution for 
global and local volume constraints, considering a passive region 
(dark region) and varying numbers of sub-regions (SR). b Optimized 

designs for a fixed downward load ( � = −90◦ ). c Optimized designs 
for an angle range �r = 15◦ . d Optimized designs for an angle range 
�r = 30◦ . e Optimized designs for an angle range �r = 60◦ . f Opti-
mized designs for an angle range �r = 90◦
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entire domain than those obtained considering global vol-
ume constraints.

We present the designs obtained for a fixed downward 
load ( � = −90◦ ) in Fig. 11b. We notice that the designs 
under the local volume constraints exhibit a greater preva-
lence of radial elements, with a concurrent reduction in the 
structural feature size in the lateral regions. Consequently, 
as the number of sub-regions increases, a more uniform 
size and distribution of elements across the Hook domain 
become evident.

In addition, for each case (sub-regions) when �r = 90◦ , 
the solution obtained for the worst-case scenario �∗ is less 
than 90◦ , implying that the results will remain consistent for 
any �r greater than �∗ . Another interesting fact is that the 
value of the critical angle ( �∗ ) tends to decrease as the num-
ber of sub-regions increases. Figure 12 shows the compli-
ance of each design with respect to �r , showing an increase 
in compliance as the number of sub-regions increases, as 
expected.

Figure 13 displays the average variation of the critical 
angle, �∗ , during each outer optimization iteration as the 
penalization factor is updated. This analysis corresponds to 
the results shown in Fig. 11f and considers a global volume 
constraint as well as two scenarios for the local volume con-
straint (16 and 48 sub-regions). In all cases, �∗ decreases 
with each outer iteration. The plot indicates that the total 
variation of �∗ is greatest for the global volume constraint 
and smallest for the local volume constraint with 48 sub-
regions. This trend correlates with the convergence behav-
ior of the objective function shown in Fig. 24, where the 
peaks of the objective function at each iteration are more 
pronounced in the global volume constraint case compared 
to the local volume constraint cases.

5.2 � Pier cap beam

Figure 14 shows the Pier cap beam domain geometry with 
a 100,000 polygonal element mesh, presenting a symmetry 
with respect to the vertical center line. The domain presents 
two distributed loads, one on each side of the Pier cap beam. 
The optimization parameters are provided in Table 2.

5.2.1 � Pier cap beam with a fixed load and a load varying 
in direction

Figure 15 illustrates the design obtained for the Pier cap 
beam considering one distributed load with a fixed direction, 
�1 , combined with a simultaneous load varying with an angle 
�2.The results present an asymmetric material distribution 
in regard to the vertical center line despite the symmetric 
domain’s geometry. This is prompted by the different load 
conditions on each side of the Pier cap beam, and it is more 
evident for fixed loads with directions below 90◦ , as shown 
in Figs. 15a–c. 

Figure 16 illustrates the compliance results for opti-
mized designs under two distinct scenarios: one with two 
fixed loads and the other with one fixed load and one con-
tinuously varying load (Case #2, Sect. 3.2). In both cases, 
the fixed loads are subjected to different load directions, 
resulting in significant variation in compliance as the load 
angle, � , varies. Remarkably, it is evident that for every 
angle, � , the compliance obtained for Case #2 (Sect. 3.2) 
consistently surpass those achieved when dealing with 
fixed load directions.

θr

Fig. 12   Hook domain compliance considering local volume con-
straints with varying numbers of sub-regions (SR) and a passive 
region obtained for different ranges of admissible angles, �r , consid-
ering Case #1 (Sect. 3.1)

θ

Fig. 13   Plot of the critical load angle (�∗) variation for the Hook 
domain example considering global and local volume constraints with 
one distributed load varying in direction, corresponding to Case #1 
(Sect. 3.1, Fig. 11f)
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Moreover, when comparing the results in Fig. 16, there 
is an offset of 30◦ between them. This offset represents the 
solutions for the worst-case scenario �∗

2
 , approximately 

30◦ for each case as shown in Fig. 15. Additionally, these 
results converge at � = −210◦ and � = −30◦ , presenting the 
same compliance. These angles denote the solutions for 
the worst-case scenario �∗

1
 (assuming this load can vary in 

any direction), which are approximately 60◦ with respect to 
the downward direction ( � = −90◦ ) for each case as shown 
in Fig. 17.

5.2.2 � Pier cap beam with two loads varying independently

Figure 17 presents the design obtained for the Pier cap beam 
considering two loads varying independently in direction 

with angles �1 and �2 for different ranges of admissible angle, 
�r . Notice that for each result, the material distribution tends 
to be symmetric with respect to the vertical center line. 
When �r = 60◦ (Fig. 17d), the solutions for the worst-case 
scenario are �∗

1
= 53.5◦ and �∗

2
= −53.6◦ . Although these 

angles are below 60◦ , when �r = 90◦ (Fig. 17e) the solutions 
for the worst-case scenario are �∗

1
= 52.7◦ and �∗

2
= −52.1◦ . 

Interestingly, even if �r increases, the designs obtained will 
remain consistent, as shown in Fig. 17f.

Moreover, for �r equalling or exceeding �r = 30◦ , the 
designs obtained are similar or present very small differ-
ences (Figs. 17c–f) compared to those derived from smaller 
�r (Figs. 17a, b). Figure 18 displays the compliance corre-
sponding to different �r , and it is noticed that as �r increases, 
the compliance does.

θ1 r θ2 r

θ

⋕

⋕

Fig. 14   Pier cap beam domain geometry and load conditions, corre-
sponding to Case #2 (Sect. 3.2) and Case #3 (Sect. 3.3)

Table 2   Input parameters for the Pier cap beam domain problem

SIMP, penalty parameter p 1, 1.5, 
2, 3, 4, 
5, 6

Sharpness of Heaviside function, � 0.1
Filter radius, r 0.15
Filter exponent, s 1
Volume fraction limit 0.4
Maximum number of iterations
(per continuation step)

100

θ2 θ2

θ2 θ2

θ2 θ2

Fig. 15   Pier cap beam domain solutions considering one distrib-
uted load with fixed directions ( �

1
 , blue load), and one distributed 

load varying in direction ( �
2
 , green load), corresponding to Case #2 

(Sect. 3.2). a Optimized design for a fixed load �
1
= 0◦ . b Optimized 

design for a fixed load �
1
= 30◦ . c Optimized design for a fixed load 

�
1
= 60◦ . d Optimized design for a fixed load �

1
= 90◦ . e Optimized 

design for a fixed load �
1
= 120◦ . f Optimized design for a fixed load 

�
1
= 150◦
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To assess the efficacy of the approach, similarly to Case 
#1 (Sect. 3.1, Fig. 10), Fig. 19a displays the compliance 
of the optimized designs considering two fixed loads for 
different load directions in comparison to the optimized 
design compliance considering two continuously varying 
loads (Case #3, Sect. 3.3). In essence, the red curve repre-
sents distinct designs corresponding to different fixed load 
directions, while the blue curve represents a single structure 
optimized for continuously varying loads, showcasing how 
its compliance fluctuates with load direction changes. It is 
worth noting that compliance values for fixed loads exhibit 
significant fluctuations as the load angle, � , shifts, with these 
values consistently lower than those observed in the worst-
case scenario (Case #3, Sect. 3.3).

In addition, Fig. 19b shows that, despite the fixed load 
design having lower compliance around the load angles con-
sidered in their optimization, the compliance for fixed load 
cases rapidly degenerates, contrary to the compliance of the 
continuously varying load structure (Case #3, Sect. 3.3), 
which remains stable, presenting lower compliance overall, 
meaning that the efficacy of this approach can be extended 
to many loads applied in the domain.

Figure 20 illustrates the average variation of the criti-
cal angles, �∗

1
 and �∗

2
 , across each outer optimization 

iteration as the penalization factor is updated. Figure 20a 
corresponds to the results shown in Figs. 15a, c, and d, 
which consider a single distributed load with fixed direc-
tions ( �1 = 0◦ , 60◦ and 90◦ ), and a single distributed load 
with a varying direction (�2) , corresponding to Case #2 
(Sect.  3.2). In all instances, �∗

2
 exhibits only minor vari-

ations throughout the outer iterations, with a maximum 
angle variation of 1.4◦ . Similarly, Fig. 20b relates to the 
results presented in Fig. 17f, which considers two distrib-
uted loads varying independently in direction ( �1 and �2 ), 
corresponding to Case #3 (Sect. 3.3). Notice that �∗

1
 and 

�∗
2
 decrease with each outer iteration, showing a maximum 

angle variation of 4.2◦ , which is greater than the variation 
observed in Case #2 depicted in Fig. 20a.

Moreover, these results align with the convergence behav-
ior of the objective function shown in Figs. 25 and 26. Here, 
the peaks of the objective function at each iteration are 
noticeably less pronounced compared to the peaks observed 
for the Hook domain in Fig. 24, where angle variations are 
significantly greater, as shown in Fig. 13. Therefore, these 
findings provide evidence of the influence of the load angle 
variability on the optimization convergence.

⋕

θ

Fig. 16   Pier cap beam domain example: compliance of the optimized 
designs considering two fixed loads for different load directions in 
comparison to the optimized design compliance considering one fixed 

load and one continuously varying load (Case #2, Sect. 3.2). That is, 
for each point of both curves, we have different designs for different 
fixed load directions
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5.3 � Bridge

Figure 21 shows the Bridge domain geometry, along with 
the load, support, and passive region. This domain is meshed 
with 143,360 hexahedral elements. The optimization param-
eters are provided in Table 3.

Figure 22 illustrates the compliance obtained consid-
ering Case #4 (Sect. 3.4) for different ranges of admis-
sible angles, �r . Notice that as �r increases, there is a clear 
difference between each case; specifically, for the worst-
case solution ( �r = 90◦ ), the compliance obtained for Case 
#4(b) is greater than the other cases. This is due to the 
lower volume yielded in Case #4(b), as shown in Fig. 23b.

Figure 23 presents the designs obtained for the Bridge 
domain considering two and three distributed independent 
loads in longitudinal and transversal orientations for which 
the bases form orthogonal planes. According to the varia-
tion in magnitude and direction, the load surfaces applied 
to the Bridge domain are: spherical, cylindrical, and cubic, 
related to Figs. 23a–c, respectively.

In Figs.  23a, b, the volume distribution typically 
exhibits symmetry around the vertical center line. As �r 
increases, there is a noticeable increase in volume concen-
tration in the central region of the domain and at the base 
of the domain columns, respectively. On the other hand, 
in Fig. 23c, the volume distribution lacks symmetry in 
relation to the vertical center line. As �r expands, volume 
concentration is markedly increased within the columns 
of the Bridge domain.

6 � Concluding remarks

This paper presents a topology optimization formulation that 
uses the linear state equations and the bi-linear properties of 
compliance to derive an analytic solution for the worst-case 
scenario caused by continuously-varying loads. These analyti-
cal solutions are obtained for different load conditions: two and 
three-dimensional loads, which can vary in an arbitrary range of 
angles, including direction and intensity. Furthermore, this for-
mulation is extended to include local volume constraints to dis-
tribute material evenly across a domain, resulting in designs with 
improved redundancy as the angle of the loads and the number 
of sub-regions increase while maintaining consistency in worst-
case scenario results. From the numerical examples, it becomes 
clear that designs considering only loads with fixed directions 
are vulnerable to variations in the load angle, implying that the 
structure may not adequately account for uncertainties and vari-
ations commonly seen in real-world applications. Conversely, 
considering a range of loads leads to different optimized designs 

θ є

θ є θ є θr

θ є θr θ є θr

θ1

θ1

θ2

θ2

θ1

θ1 θ1

θ1θ2 θ2

θ2 θ2

Fig. 17   Pier cap beam domain solutions considering two distributed 
loads varying independently in direction ( �

1
 and �

2
 , blue and green 

load, respectively), corresponding to Case #3 (Sect. 3.3). a Optimized 
design for fixed downward loads ( � = −90◦ ). b Optimized design for 
angle ranges �r = 15◦ . c Optimized design for angle ranges �r = 30◦ . 
d Optimized design for angle ranges �r = 60◦ . e Optimized design for 
angle ranges �r = 90◦ . f Optimized design for angle ranges �r = 180◦

θr

θ2θ1

Fig. 18   Pier cap beam domain compliance obtained for different 
ranges of admissible angles, �r , considering Case #3 (Sect. 3.3)
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⋕

θ θ θ
θ θ θ

θ

θ

Fig. 19   Plot of the compliance of the Pier cap beam domain opti-
mized designs considering several loading scenarios. a Compliance 
of the optimized designs considering two fixed loads for different 
load directions in comparison to the optimized design compliance 
considering two continuously varying loads (Case #3, Sect. 3.3). That 
is, the red curve represents distinct designs corresponding to different 
fixed load directions, while the blue curve represents a single struc-
ture optimized for continuously varying loads (Case #3, Sect.  3.3), 
showcasing how its compliance fluctuates with load direction 

changes. b Compliance of fixed loads designs in a as the loads vary 
in direction. Each dotted line in this plot represents a single structure 
optimized for fixed load directions and how its compliance changes 
with the load directions. This plot shows that, despite the fixed load 
design having lower compliance around the load angles considered in 
their optimization, the compliance for fixed load cases rapidly degen-
erates, contrary to the compliance of the continuously varying load 
structure, which remains stable, presenting a lower compliance over-
all



Topology optimization with continuously varying load magnitude and direction for compliance… Page 17 of 21  179

that are closer to realistic ones and robust under load direction 
variations. Therefore, this topology optimization formulation 
facilitates the design of structures capable of handling varia-
tions in load directions, enhancing performance and reliability. 
Future work could expand the continuously-varying load cases 
to nonlinear state equations, e.g., hyper-elastic materials, by tak-
ing advantage of local linearization of the respective objective/
constraint functions, applying stochastic methods, or using data-
driven approaches.

θ

θ1
θ2

θ

θ1 = θ2
θ1 = θ2
θ1 = θ2

Fig. 20   Plot of the variation of the critical load angles ( �∗
1
 and �∗

2
 ) for 

the Pier cap beam domain example considering: a one distributed 
load with fixed directions (�

1
) , and one distributed load varying in 

direction (�
2
) , corresponding to Case #2 (Sect.  3.2, Fig. 15a, c and 

d). b Two distributed loads varying independently in direction ( �
1
 and 

�
2
 ), corresponding to Case #3 (Sect. 3.3, Fig. 17f)

Fig. 21   a Front view of the Bridge domain geometry and load con-
ditions, corresponding to Case #4 (Sect.  3.4). b Three-dimensional 
view of the Bridge domain geometry

Table 3   Input parameters for the Bridge domain problem

SIMP, penalty parameter p 1, 1.5, 2, 3, 4
Sharpness of Heaviside function, � 0.1
Filter radius, r 1
Filter exponent, s 1
Volume fraction limit 0.4
Maximum number of iterations
(per continuation step)

200

θr

⋕
⋕
⋕

Fig. 22   Bridge domain compliance obtained for different ranges of 
admissible angles, �r , considering Case #4(a)–(c) (Sect. 3.4)
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Fig. 23   Bridge domain solutions considering loads varying in three 
dimensions, corresponding to Case #4 (Sect.  3.4). Isometric and 
front view of the optimized designs for different ranges of admissi-
ble angles, �r , considering: a independent loads varying in magni-
tude and direction in orthogonal planes generating a spherical load 

surface. b Independent loads in orthogonal planes, one varying in 
magnitude and direction, and the other varying just in magnitude, 
generating a cylindrical load surface. c Independent loads varying in 
magnitude in orthogonal planes generating a cubic load surface
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Appendix: Convergence of the optimization 
approach

The convergence plots of the optimization approach for 
the Hook example are displayed in Fig. 24, and for the Pier 
cap beam example are displayed in Figs. 25 and 26. In each 
plot, the objective function (compliance) is shown as a func-
tion of the optimization iterations. The peaks are caused at 
every outer iteration when the penalization factor is updated. 
However, despite the peaks, the convergence is consistently 
smooth across all cases.

Acknowledgements  This work was partially funded by the National 
Science Foundation, United States (NSF) through Grant #2105811. 
The first author acknowledges support from the National Program of 
Scholarship and Educational Credit (PRONABEC) of the Ministry of 
Education of Peru.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest. The authors declare no competing interests.

Replication of results  The numerical results presented in this document 
can be replicated using the methodology and formulations described 
here.

θr
θr θr θr

θr

Fig. 24   Plot of the optimization convergence for the Hook domain 
example considering global and local volume constraints with one 
distributed load varying in direction, corresponding to Case #1 
(Sect. 3.1, Fig. 11). a Global volume constraint. b Local volume con-
straint with 16 sub-regions. c Local volume constraint with 48 sub-
regions
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Fig. 25   Plot of the optimization convergence for the Pier cap beam 
domain example considering one distributed load with fixed direc-
tions ( �

1
 ), and one distributed load varying in direction ( �

2
 ), corre-

sponding to Case #2 (Sect. 3.2, Fig. 15)
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Fig. 26   Plot of the optimization convergence for the Pier cap beam 
domain example considering two distributed loads varying indepen-
dently in direction ( �

1
 and �

2
 ), corresponding to Case #3 (Sect. 3.3, 

Fig. 17)
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