
Vol.:(0123456789)

Structural and Multidisciplinary Optimization (2024) 67:136 
https://doi.org/10.1007/s00158-024-03826-7

RESEARCH PAPER

A smooth maximum regularization approach for robust topology 
optimization in the ground structure setting

Emily Alcazar1 · Lorran F. Oliveira2 · Fernando Vasconcelos Senhora3 · Adeildo S. Ramos Jr.2 · Glaucio H. Paulino1

Received: 18 September 2023 / Revised: 29 April 2024 / Accepted: 21 May 2024 / Published online: 30 July 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
A robust ground structure topology optimization framework is presented to handle the uncertainty of load direction and design 
for the worst case compliance scenario. The deterministic optimization framework is formulated by a min-max compliance 
objective to first determine the critical load angle corresponding to the worst case compliance and then to design the topology 
for compliance minimization. The first optimization problem, based on our load definition, is shown to be equivalent to a 
maximum eigenvalue function, thus causing significant drawbacks in gradient-based optimization approaches in the case of 
eigenvalue coalescence. Here, we propose a method to treat the non-differentiability of the maximum eigenvalue optimization 
problem by a smooth maximum regularization function; hence, presenting a framework for optimizing ground structure 
networks considering an infinite number of load directions. The results achieved demonstrate that the proposed framework 
provides solutions with low compliance in all possible loading directions leading to robust structural designs.

Keywords Topology optimization · Worst case loading · Eigenvalue optimization · Robust topology optimization

1 Introduction

Topology optimization is a method which finds the opti-
mal placement of material and void in a design space under 
a certain set of design criteria, as originally proposed by 
Bendsøe and Kikuchi (1988). This method has since become 
a powerful design tool in several disciplines of engineering 
to achieve elegant and efficient structures, but in many works 
has been limited to one or a small, finite number of load case 
scenarios which may not be fully representative of real-life 
structural applications (Rozvany 2009; Sigmund and Maute 
2013). In topology optimization, when dealing with one 

particular loading case, the final optimal solution is often 
extremely sensitive to any perturbation in the loading espe-
cially for optimal truss networks such as the Michell struc-
tures (Michell 1904). This is due to the optimized structure 
being highly dependent on the prescribed load case direction 
as demonstrated in Fig. 1, where a cantilever truss network is 
optimized for compliance minimization under a single load 
case in the direction, � . The results demonstrate the cor-
relation between the applied loading direction and the final 
number and arrangement of the truss elements as well as 
the compliance. This example communicates the importance 
of design approaches that consider many possible loading 
scenarios for reliable and robust designs; this may include 
loads varying in magnitude, such as wind or live loads, or 
loads varying in orientation, such as centripetal forces or 
vibrational frequencies.

Robust optimization is a class of optimization that deals 
with uncertainty, which can be handled either by stochas-
tic, deterministic, or worst case approaches (Ben-Tal et al. 
2009). In the context of structural design, robust optimiza-
tion frameworks are important in finding solutions that are 
resilient in the real-world environment, where uncertainty 
is present, and can be categorized into subfields namely 
by reliability-based topology optimization (RBTO) (Khar-
manda et al. 2004) and robust topology optimization (RTO) 
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(Beyer and Sendhoff 2007; Schuëller and Jensen 2008). In 
this context, RBTO finds the optimal layout of a structure 
while considering the effects of uncertainty in parameters 
to avoid a specified failure event, where the optimization 
framework is composed by expectation functions and failure 
probabilities (Bae and Wang 2002; Maute and Frangopol 
2003; Jensen 2005). For example, RBTO was implemented 
to incorporate safety into the topology optimization frame-
work through adding randomness in parameters such as 
geometrical description, material representation, or applied 
loading in the form of structural reliability constraints which 
were quantified by a reliability index via first-order reliabil-
ity methods (Kharmanda et al. 2004). The reliability index 
approach for quantifying probabilistic constraints has been 
commonly used for reliability-based structural optimiza-
tion (Thanedar and Kodiyalam 1992; Reddy et al. 1994; 
Chandu and Grandhi 1995). Alternatively, RTO aims to 
design structures that are robust in the case of variations in 
parameters by means of both deterministic and stochastic 
frameworks (Dunning and Kim 2013; Holmberg et al. 2017; 
De et al. 2020). Recent works of stochastic RTO include, but 
are not limited to, accounting for geometric imperfections 
considering geometric non-linearity by using the perturba-
tion method to quantify stochastic properties (Jansen et al. 
2015). Da Silva et al. (2018) presented an RTO framework 
for minimizing volume subject to local stress constraints 
written as weighted average between the expected value and 
standard deviation with uncertainty estimation via the first-
order perturbation method. Zhao and Wang (2014) proposed 
a formulation to minimize compliance considering load 
uncertainty of both concentrated and uniformly distributed 
loads, where Monte Carlo simulations are used to approxi-
mate the weights required to compute the mean and standard 

deviation of the compliance before optimization. Determin-
istic RTO frameworks include a game theory approach pro-
posed by Holmberg et al. (2017) for handling compliance, 
global stress, or mass as objective functions or constraints in 
determining the topology for the worst case loading. Senhora 
et al. (2023) proposed a framework to minimize mass subject 
to local stress constraints using an augmented Lagrangian 
method, where the worst case loading was determined using 
analytical expressions for various different types of loading 
uncertainty.

For worst case compliance under certain load case 
parametrization, the min-max formulation has been found 
to be equivalent to finding a maximum eigenvalue of a 
generalized eigenvalue problem (Cherkaev and Cherkaev 
2008; Holmberg et al. 2017). Eigenvalue problems have 
been known to arise frequently in structural optimization 
problems in the form of buckling load factors and vibration 
frequencies and pose mathematical challenges in the case of 
multiple eigenvalues for obtaining the sensitivity information 
(Seyranian et al. 1994). Previous researchers have addressed 
the convergence issues related to eigenvalue optimization 
by, but not limited to, semi-definite programming (Ben-
Tal and Nemirovski 1997; Holmberg et al. 2015; Thore 
et al. 2017), adding orthogonal point loads to the RTO 
framework (Holmberg et al. 2017), using a block Jacobi 
conjugate gradient iterative approach (Dunning et al. 2016), 
smooth convex approximation to a composite function 
of the maximum eigenvalue function (Chen et al. 2004), 
and using a smoothing method with a projected gradient 
update scheme for the RTO problem in continuum topology 
optimization (Nishioka and Kanno 2023).

In this work, we present an RTO formulation for truss 
structures in the ground structure setting which incorporates 
load uncertainty via a worst case compliance deterministic 
approach. The loading parameterization is generalized 
for a load varying in both magnitude and direction. This 
framework addresses the issue of optimal truss structures 
found by traditional topology optimization approaches being 
highly sensitive to any variation of the applied loading by 
accounting for infinitely many load directions and designing 
the topology based on the worst possible loading case. The 
proposed framework handles the convergence issues related 
to the maximum eigenvalue optimization problem by the 
smooth maximum regularization function.

The remainder of this paper is organized as follows: 
the framework for the load case with uncertain direction 
is described in a mathematical context in Sect. 2, where 
a simple truss example is shown to demonstrate the non-
smooth sensitivity information that may occur in the 
maximum eigenvalue problem. The optimization formulation 
is described in Sect. 3, and in Sect. 4 the sensitivity analysis 
is derived. The numerical results are shown in Sect. 5, where 
the framework is demonstrated to find topologies which are 

Fig. 1  Multiple topology optimized ground structures with an applied 
static point load analyzed at varying directions
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robust with low compliance for varying load directions. 
The proposed framework is also demonstrated to handle 
various types of rotating loads. Our findings are concluded 
in Sect. 6.

2  Maximum eigenvalue function

2.1  Uncertainty loading

In our framework, we approach the RTO via a deterministic 
approach in finding the critical loading scenario. An infinite 
number of load cases is considered for the case of a point 
load varying in [−�, �] which can be freely rotating or 
subject to a range of admissible angles. The load cases are 
parameterized in a manner such that the magnitude can vary 
as a function of � ; this is done by the following expression:

where Fx and Fy are the basis vectors of the load param-
eterization with the proper corresponding magnitude. The 
uncertainty of the loading direction is accounted for by the 
cos � and sin � terms. In the general case when ‖Fx‖ ≠ ‖Fy‖ 
the load will take the form of an ellipsoid domain and in 
the particular case when ‖Fx‖ = ‖Fy‖ the load is param-
eterized by a circular domain. For additional flexibility in 
the loading, the elliptical load domain may also be subject 
to an arbitrary rotation, �rot , by rotating the basis vectors 
accordingly. The three loading cases mentioned above will 
be further referenced as an unconstrained loading case. The 
fourth type of loading case to be considered in this work is 
when theta is restricted to a range of admissible angles, �r . 
This will be denoted as the constrained loading case. Due to 
the symmetry of compliance as a result of the linear elastic-
ity, the range of the constrained loading will also contain a 
secondary range of admissible angles � radians apart. The 
secondary range of admissible angles is shown in blue in 
Fig. 2d. The complete set of different loading cases are illus-
trated in Fig. 2.

(1)F(�) = Fx cos � + Fy sin �,

From the linear elastic state equation the displacement 
can be written by

The displacement terms are separated by the degrees 
of freedom associated with the x and y direction and 
are determined by the stiffness matrix and force vector, 
Ux(x) =

(
K(x)−1Fx

)
 and Uy(x) =

(
K(x)−1Fy

)
 . Then the 

compliance for this load parameterization can then be 
written as

After distributing the terms, the compliance can be rewritten 
by the following expression (Senhora et al. 2023):

The compliance terms are represented by txx(x) = UT
x
K(x)Ux , 

tyy(x) = U
T
y
K(x)Uy

 , and txy(x) = UT
x
K(x)Uy . For demonstration 

that the optimization problem for finding the critical load 
angle corresponding to the maximum compliance is 
equivalent to a maximum eigenvalue problem, we write 
Eq. 4 in matrix form.

In our RTO approach for the unconstrained load case, we 
determine the load direction corresponding to the worst case 
compliance through the following optimization problem:

where T(x) ∈ ℝ
n×n and n(�) ∈ ℝ

n , where n is the spatial 
dimension. The Lagrangian for this optimization problem 
can be expressed by

(2)U(x, �) = Ux(x) cos(�) + Uy(x) sin(�).

(3)C(x, �) = U(x, �)TK(x)U(x, �).

(4)
C(x, �) = txx(x) cos

2(�) + tyy(x) sin
2(�)

+ 2txy(x) cos(�) sin(�).

(5)
C(x, �) = [cos(�) sin(�)]

[
txx txy
txy tyy

] [
cos(�)

sin(�)

]

= n(�)TT(x)n(�)

(6)
max
n

C(x, �) = n(�)TT(x)n(�)

s.t. n(�)Tn(�) = 1,

(7)L(n(�), �) = n(�)T(x)n(�) − �
(
n(�)Tn(�) − 1

)
,

Fig. 2  Illustration of the different load types that may be specified by the general loading definition; a the elliptical domain when ‖F
x
‖ ≠ ‖F

y
‖ ; b 

the particular case when ‖F
x
‖ = ‖F

y
‖ for the circular domain; c the rotated elliptical domain; d the constrained load domain
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where � is the Lagrange multiplier. The Lagrangian is then 
evaluated at the stationary point.

From expression Eq.  8 it is clear that the optimization 
problem Eq. 6 is an eigenvalue problem and due to the 
maximization it is equivalent to a maximum eigenvalue 
function. In the optimization problem the design variable 
is the eigenvector, n(�) , which is used to find the maximum 
associated eigenvalue, � . Similarly, this same definition 
for the continuously varying load can be extended to 3-D 
spherically varying load problems in polar coordinates 
which is also equivalent to a maximum eigenvalue problem, 
see Appendix C for details.

For the constrained loading case, delimited by �r , the 
optimization problem changes to the following with an 
additional constraint on theta.

This may be equivalent to the eigenvalue problem if the 
range of admissible angles is large enough to capture both 
eigenvectors.

The eigenvalue information is used to formulate the 
topology optimization problem, where the structural 
layout is designed for the worst case loading direction 
by minimizing the maximum eigenvalue function. The 
minimization of the maximum eigenvalue function is a 
special class of eigenvalue optimization problems (Lewis 
and Overton 1996). These optimization problems obtain 
difficulties in computing the sensitivity information 
when the objective function is non-smooth in the case 
of repeated eigenvalues (Overton and Womersley 1995; 
Shapiro and Fan 1995). This results in standard approaches 
of solving optimization problems via gradient-based 
methods useless as the first-order sensitivity information 
is inaccurate.

For demonstration let us consider an n × n real sym-
metric matrix, A(x) , which is dependent smoothly on a 
vector of real parameters x ∈ ℝ

n . The real eigenvalues are 
denoted by �1(x) ≥ �2(x) ≥ ... ≥ �n(x) in non-increasing 
order and their corresponding eigenvectors are denoted 
by v1, v2, ..., vn . The eigenvectors will be orthonormal due 
to the symmetry of A(x) as true in the case of linear elas-
ticity. It is assumed that A(x) is twice continuously differ-
entiable and thus, when the eigenvalues are simple, i.e., 
when the eigenvalues correspond to a multiplicity of one, 
they are Frécher differentiable and inherit C2 smoothness 

(8)
�L(n(�), �)

�n(�)
= 0 = 2T(x)n(�) − 2�n(�)

⟹ T(x)n(�) = �n(�)

(9)
max
n

C(x, �) = n(�)TT(x)n(�)

s.t. n(�)Tn(�) = 1

− �r ≤ � ≤ �r

of the function A(x) (Overton and Womersley 1995). The 
problem can be written such that

Given that the eigenvectors are orthonormal for the 
symmetric matrix A(x) , we may multiply the expression 
above by vj to obtain

where �ij is the Kronecker delta. From expression Eq. 11 the 
first-order sensitivities of the eigenvalues may be obtained 
by

The sensitivity for the eigenvalues in Eq. 12 only holds true 
when the eigenvalue is simple with a multiplicity of one for 
distinct eigenvalues which additionally implied C2 continuity 
such that this specific case of the maximum eigenvalue 
function can be minimized using conventional gradient-
based approaches. However, if the eigenvalues coalesce 
with a multiplicity of n > 1 this indicates that n eigenvalues 
are equivalent and correspond to eigenvectors that are not 
unique resulting in an infinite number of solutions that 
satisfy Eq. 11 through linear combinations of different 
eigenvectors corresponding to the same repeated eigenvalue 
(Seyranian et al. 1994). In this case, the expression for the 
gradient of the eigenvalue in Eq. 12 no longer holds and the 
eigenvalue is not continuously differentiable.

2.2  Repeated eigenvalue example

To show how repeated eigenvalues may arise in our 
proposed RTO framework, a simple, symmetric two-
variable truss example is presented followed by a 
discussion on our approach for treating the eigenvalue 
singularities in our optimization framework.

2.2.1  General case

In Fig. 3, we generalize the parameterized loading case for 
a simple four bar truss problem, where the cross-sectional 
areas are denoted by x1 and x2 , L1 and L2 are the lengths of 
the bars, Fx and Fy are the magnitude of the basis applied 
loads, and � is the arbitrary angle at which the load basis 
is positioned.

We arrive at the following composition for the stiffness 
matrix:

(10)A(x)vi = �ivi i = 1, ..., n.

(11)vT
i
A(x)vj = �i�ij i, j = 1, ..., n,

(12)
��i

�xj
= vT

i

�A(x)

�xj
vi.
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where E is the Young’s modulus. For the purpose of this 
example, we take the external force vector to be expressed by 
the following definition similarly to Holmberg et al. (2015).

In keeping consistency with our previous definition Eq. 1, 
B(�) represents a matrix where each column corresponds 
to a basis vector of the load parameterization and 
r = [cos �, sin �]T  captures the uncertainty in the load 
direction. Using this definition for F(�) the compliance may 
be defined by

Here, the compliance matrix may be expressed by 
T(x, �) = B(�)K(x)−1B(�)T  . For the sake of generalizing 
the compliance matrix in terms of � , we expand the B(�) 
matrix by

Using the new definition of B(�) the compliance matrix 
T(x, �) is computed,

(13)K(x) =

⎡
⎢
⎢
⎢
⎣

2Ex1

L1
0

0
2Ex2

L2

⎤
⎥
⎥
⎥
⎦

,

(14)F(�, �) = B(�)Tr(�)

(15)C(x, �, �) = r(�)TB(�)K(x)−1B(�)Tr(�).

(16)B(�) =

[
Fx cos � Fx sin �

−Fy sin � Fy cos �

]

.

where

By examining the general expression of T(x, �) in Eqs. 17 
and 18, it is clear that repeated eigenvalues may arise in  
the following conditions: (1) when � = 0 or � = n�∕2 
(n=0,1,2,3...) and F2

x
L1∕x1 = F2

y
L2∕x2 ; (2) L1x2 = L2x1 and 

Fx = Fy.

2.2.2  Particular case

In a particular case study, we examine the compliance matrix 
when � = 0 which results in the following compliance 
matrix:

Because T is a diagonal matrix it is observed that the 
eigenvalues of T , [�1, �2] = eig(T) , are the diagonal entries 
of T denoted by the following.

For this particular case study it is assumed that L1 = L2 , 
Fx = Fy and x1 = x2 which implies that the eigenvalues 
coalesce and thus are not continuously differentiable. The 
singularity for this case is also visualized in the contour plot 
of the compliance objective in Fig. 4, where it can be seen 
that there exists discontinuities along the axis where x1 = x2.

2.3  Smooth maximum regularization

If repeated eigenvalues occur in a small truss example it is 
intuitive that they may arise when dealing with highly dense 
ground structure networks. To handle the non-smooth eigen-
value function in the gradient-based optimization framework, 
we approximate the maximum eigenvalue function by a 
smooth maximum regularization function which we will refer 
to as the �-regularization (Biswas et al. 2021). By imposing a 

(17)T(x, �) =

[
txx(x, �) txy(x, �)

txy(x, �) tyy(x, �)

]

(18)

txx(x, �) =
F2
x

(
L1x2 cos

2 (�) + L2x1 sin
2 (�)

)

2Ex1x2

txy(x, �) =
FxFy

(
L1x2 − L2x1

)
sin (2�)

4Ex1x2

tyy(x, �) =
F2
y

(
L1x2 sin

2 (�) + L2x1 cos
2 (�)

)

2Ex1x2
.

(19)T(x, 0) =

⎡
⎢
⎢
⎢
⎢
⎣

L1F
2
x

2Ex1
0

0
L2F

2
y

2Ex2

⎤
⎥
⎥
⎥
⎥
⎦

.

(20)�1 =
L1F

2
x

2Ex1
, �2 =

L2F
2
y

2Ex2

Fig. 3  Generalized truss example demonstrating repeated eigenvalues
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smooth regularization function on the maximum eigenvalue 
function, we resolve any instances of singularities that would 
arise in the original non-smooth function. Thus, alleviating 
convergence issues caused by invalid gradient information 
and oscillatory behavior between the orthogonal worst case 
loading directions. The proposed �-regularization uses infor-
mation from both eigenvalues to approximate and smooth 
the maximum eigenvalue function, which approaches the 
original function as � → 0 , where � is a parameter of the 
same units of the eigenvalues. Alternatively, one could also 
use other regularization functions to achieve this outcome, 
this is demonstrated for the p-norm regularization function 
in Appendix B.

Even in the case that the eigenvalue functions are non-
smooth upon eigenvalue coalescence their summation and 
product may be represented by smooth functions by the 
following remarks:

Remark 1 Considering a real 2 × 2 symmetric, non-singular, 
matrix A(x) depending smoothly on parameter x with an 
orthonormal basis of eigenvectors for all x ∈ ℝ

n ; the sum 

(21)
max(�1, �2) ≈ f�(�1, �2) =

1

2
(�1 + �2

+

√

(�1 − �2)
2 + �2)

and product of the eigenvalues may be expressed by smooth 
functions: �1(x) + �2(x) = trA(x) and �1(x)�2(x) = detA(x) 
which holds for changes in multiplicity. Thus, the derivative 
of the eigenvalue summation and products exist as proved in 
Gravesen et al. (2011).

To show that the sensitivity of the proposed �-regularization 
function is composed of smooth functions of the eigenvalues, 
we take the derivative of the function in a general way.

The partial derivatives of the �-regularization function with 
respect to the eigenvalues are derived as follows:

When the eigenvalues are equivalent we can make the claim 
that �f�∕��1 = �f�∕��2 = 1∕2 , which leads to Eq. 22 being 

(22)
d

dx
[f�(�1(x), �2(x))] =

�f�

��1

��1

�x
+

�f�

��2

��2

�x

(23)
�f�

��1
=
1

2
+

�1 − �2

2
√
(�1 − �2)

2 + �2

(24)
�f�

��2
=
1

2
+

�2 − �1

2
√
(�1 − �2)

2 + �2
.

Fig. 4  Contour plot of the compliance objective function of the truss 
example for the particular case when � = 0 ; a the original problem 
with unconstrained loading and no regularization; b the uncon-

strained loading with � regularization; c the constrained loading case 
with �

r
= �∕2 d the constrained loading case with �

r
= �∕6 ; e the 

constrained loading with � regularization
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represented in a simplified form for the repeated eigenvalue 
case by

Thus in addition to the �-regularization function being 
composed by sum and product terms of the eigenvalues, 
the derivative of the �-regularization function in the case of 
repeated eigenvalues is composed by the derivative of the 
summation of eigenvalues with respect to x which is proven 
to exist by the earlier Remark 1.

Corollary 1 Given that f�(�1, �2) is a smooth function and 
is composed by smooth functions for �1 and �2 , even in 
the occurrence of repeated eigenvalues, the derivative of 
f�(�1, �2) is continuous and may be expressed by Eq. 26.

The ��i∕�xj terms can be determined by equation 12 as long 
as the basis of eigenvectors is orthonormal (Torii and Faria 
2017), which is true in the case of linear elasticity due to 
the symmetric stiffness matrix. Thus, the �-regularization 
function is continuously differentiable for repeated eigen-
values. This approach is suitable for changes in multiplicity 
throughout the optimization and is computationally inex-
pensive since the worst case loading framework only deals 
with symmetric matrices of dimensions n × n with n = 2 for 
2D structures.

To demonstrate that the �-regularization approach does 
smooth the singularities for the unconstrained loading problem 
and more closely approximates the original eigenvalue func-
tion as � → 0 , we impose the regularization onto the origi-
nal simple truss example with � = 0.1 (see Eq. 33 for more 
details). In Fig. 4a, b, the contour plot of the � regularized 
compliance objective function and the original, non-regular-
ized compliance is shown. The original compliance function 
at x1 = x2 is non-smooth which indicates that the derivative 
of compliance is not continuous as the directional derivative 
varies depending on which side the limit is taken from. For the 
compliance which is approximated by �-regularization, the 
function is continuous and smooth and more closely approxi-
mates the original function as � → 0 . The same regulariza-
tion approach is imposed on the constrained loading frame-
work to achieve smoothness. In Fig. 4c, we show the original 
non-smooth problem when �r = �∕2 is equivalent to that of 
the unconstrained framework in (a). We also demonstrate in 
part (d) that the non-smoothness arises even for a constraint 
that does not contain both eigenvalues, for the case, where 

(25)
d

dx
[f (�1(x), �2(x))] =

1

2

(
��1

�x
+

��2

�x

)

.

(26)

�f�(x)

�x
=

1

2

(
��1

�x
+

��2

�x
+
(
(�1 − �2)

2 + �2
)−1∕2

(�1 − �2)

(
��1

�x
−

��2

�x

))

�r = �∕6 , due to the discrete bound on � . We then show in part 
(e) that after imposing regularization we can achieve a smooth 
function for the �r = �∕6 case. Both proposed topology opti-
mization frameworks for unconstrained and constrained 
loading will include �−regularization to make the problem 
well–posed for gradient-based optimization.

3  Optimization formulation

3.1  Unconstrained loading

The RTO framework presented in this work is described by the 
following min-max optimization formulation.

To formulate a topology optimization framework that con-
siders the critical load case directions for the unconstrained 
load, the critical load case directions (eigenvectors) corre-
sponding to the maximum and minimum compliance (eigen-
values) are determined and used to inform the topology opti-
mization statement at each iteration. To avoid issues related 
to eigenvalue coalescence both eigenvalue information is 
used for the formulation of the compliance minimization 
objective function using the �−regularization function as 
shown in Eq. 28 and discussed in Sect. 2. The topology opti-
mization procedure for the presented min-max formulation 
is outlined in Algorithm 1.
Algorithm 1

(27)min
x

max
�

C(x,�)
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Due to the linear elasticity, the compliance matrix T ∈ ℝnxn 
is positive semi-definite and symmetric, with eigenvalues 
� ∈ ℝ

+ and orthogonal eigenvectors. We denote the eigenval-
ues by [Cmax,Cmin] = eig(T) which are then used to inform 
the topology optimization problem. To visualize the previous 
remarks on the relation of the eigenvalues to the best and worst 
case compliance, the compliance function, C(x,�) , is plotted in 
Fig. 5. The figure demonstrates the periodicity of the function, 
the orthogonality of the eigenvectors, and the relation of the 
eigenvalues to the compliance extrema.

The topology optimization problem is composed by the 
smooth �−regularization with both eigenvalues as entries 
Cmin(x, �

cr
min

) and Cmax(x, �
cr
max

) , which will be denoted by Cmin 
and Cmax for brevity.

The objective function now has influence from both 
eigenvalue and eigenvector information such that if there 
are repeated eigenvalues, the �-regularization function will 
approximate the maximum of them. The design variables for 
the minimum compliance problem are the cross-sectional 
areas, x , which appear in the eigenvalue terms. The objective 
function is subject to a volume constraint, where Vmax is an 
arbitrarily set maximum volume and L is the vector of bar 
lengths. Box constraints are also imposed on the cross-
sectional areas by xmin and xmax for n number of bars. The 
lower bound of the box constraints, xmin , is set to be a small 
value greater than zero such that the stiffness matrix never 
becomes singular during the optimization. Linear elastic 
state equations are imposed and defined by the stiffness 
matrix K(x) , external force vector F(�) , and the implicitly 
determined displacement u(x,�).

3.2  Constrained loading

For the loading case constrained by �r , we propose a 
framework that smooths instances of singularities through 
the same � regularization defined previously. However, in this 
case, the definition for Cmax and Cmin is modified to obtain the 
appropriate maximum and minimum compliance for the range 
of admissible angles. This is achieved by first computing the 
analytical direction for the unbounded maximum compliance 
by

(see Senhora et al. (2023) for more details) and the direction 
corresponding the unbounded minimum compliance

(28)

min
x

C(x,�) =
1

2

�
Cmax + Cmin

+
√
(Cmax − Cmin)

2 + �2

�

s.t. g(x) = LTx − Vmax ≤ 0

xmin ≤ xi ≤ xmax i = 1, ..., n

with K(x)u(x,�) = F(�)

(29)�cr
1
= tan−1(2txy, txx − tyy),

where � is a “machine epsilon” value to ensure the term 
inside the sign operator is non-zero. Note that these 
equations are equivalent to finding the direction of the 
eigenvectors. To now consider the constraint on our 
loading direction, we find the corresponding maximum and 
minimum compliance within the loading range as follows:

With the new critical loading directions for the constrained 
case, we may formulate our topology optimization problem 
equivalently to Eq.  28, where the Cmax and Cmin are 
determined by the directions defined in Eqs. 31 and 32.

In the proposed objective function, we compute the 
regularization parameter by a general approach.

The parameter � is a sufficiently small parameter ( � = 0.05 
in this work) and the terms C0

max
 and C0

min
 correspond to the 

eigenvalues at the first iteration of the topology optimization 
procedure. This was the approach used to compute the � 
across all numerical examples.

(30)�cr
2
= �cr

1
−

�

2
sign (�cr

1
+ �),

(31)�cr
max

=min
(
max

(
�cr
1
,−�r

)
, �r

)

(32)�cr
min

=min
(
max

(
�cr
2
,−�r

)
, �r

)
.

(33)� = �

(
C0
max

+ C0
min

2

)

Fig. 5  Compliance as a function of theta where the eigenvalues cor-
respond to the maximum and minimum compliance with orthogonal 
eigenvectors
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4  Sensitivity analysis

In order to solve the topology optimization problem, we 
use gradient-based solvers which require accurate gradient 
information of both the objective and the constraint functions. 
We begin the sensitivity analysis by taking the derivative of 
the volume constraint.

Next the sensitivity of the objective function is written in a 
general form derived by the chain rule:

For the unconstrained loading case, the Cmax and Cmin 
eigenvalues will always be at stationary points and 
thus �C∕�� = 0 which cancels the ��∕�x term. For the 
constrained loading case, where the critical directions lie 
on the bound, the ��∕�x = 0 due to �r being independent of 
x . In the case that the critical load directions are within the 
bound this implies the �C∕�� = 0 as in the unconstrained 
case. For both loading scenarios our total derivative becomes 
dC(x,�)∕dx = �C∕�x , with the sensitivity of the objective 
function by

The sensitivities of the maximum and minimum compliance 
terms may be determined by equation 11 as per discussion 
in Sect. 2. We note that compliance terms may be expressed 
in terms of the cross-sectional areas and the corresponding 
loading direction by

where its derivative �Cmax∕�x is determined by the direct 
method.

The �Cmin(x, �
min
cr

)∕�x term is expressed similarly.

(34)
dg(x)

dxi
= Li, i = 1, ..., n

(35)
dC(x,�)

dx
=

�C

�x
+

�C

��

��

�x
.

(36)

dC(x,�)

dx
=

�C

�x

=
1

2

[
�Cmax

�x
+

�Cmin

�x

+
(

(Cmax − Cmin)
2 + �2

)−1∕2

(Cmax − Cmin)
(
�Cmax

�x
−

�Cmin

�x

)]

.

(37)Cmax(x, �
max
cr

) = FT (�max
cr

)U(x, �max
cr

),

(38)
�Cmax

�x
= −U(x, �max

cr
)T
�K(x)

�x
U(x, �max

cr
)

5  Numerical results

In this section, several numerical examples are presented 
to demonstrate the results achieved by the proposed 
optimization framework. In the first example, the topology 
and compliance of the proposed RTO scheme is compared 
against nominal cases considering a single load direction. 
In the following example, the significance of the proposed 
RTO framework is demonstrated by conducting a forward 
analysis and comparing the results of a truss network 
designed for a single load direction versus the presented 
infinite load cases for a point load with � ∈ [−�, �] . Next 
the third example demonstrates the control of the proposed 
loading parameterization to handle different shapes of 
elliptical loading, which result in drastically different 
structural layouts and designs of the tower domain. The 
case of multiple rotating point loads is also analyzed in 
the Disk domain example which examined several cases 
of multiple point loads including one with repeated 
eigenvalues. Then we apply a distributed rotating load on 
the hook domain with our proposed layout constraint in the 
ground structure setting. Finally, we showcase an example 
using the proposed framework for the constrained loading 
case.

The input optimization parameters are summarized 
in individual tables for each numerical example. The 
convergence tolerance is the tol parameter described in 
Algorithm 1 and the move limit, � , controls the allowable 
update in the design variables at each iteration, see 
Bendsoe and Sigmund (2013) for more details. The 
Young’s modulus, E, is defined such that the objective 
function is on the order of magnitude one-ten for efficient 
performance of the update scheme. All illustrated 
examples have the same post-processing procedure which 
includes filtering out the areas that obtain a fraction 
relative to the maximum area that is below the specified 
end filter, �f .

If hanging bars remain after the filtering, i.e., bars 
only connected to the structure by one node, they are 
subsequently removed from the structure as they do not 
contribute to the stiffness of the structure. The end filter 
is chosen to be sufficiently small such that the structure 
remains in equilibrium. All ground structures meshes are 
generated with full-level connectivity but the Hook example, 
and the Circular domain example, see problem description 
for more details. Finally, all numerical examples considering 
the unconstrained loading case use the Optimality Criterion 
method (OC) as the update scheme (Bendsøe 1995) due to 

(39)xi = Filter(x, 𝛼f ) =

{
0 if

xi

max(x)
< 𝛼f

xi otherwise
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the speed and smooth convergence. The constrained loading 
range (delimited by �r ) example uses a globally convergent 
version of the Method of Moving Asymptotes (MMA) 
(Svanberg 2002) from the NLOpt package (Johnson 2007) 
to handle non-monotonic behavior of the �cr

max
 oscillating on 

the bound.

5.1  Beam with central loading

In this example, a beam supported on both ends with a load 
applied to the center is optimized both considering the pro-
posed RTO framework and for the conventional compliance 
minimization topology optimization considering a single 
load with a static direction, which we will denote as the 
nominal case. The beam dimensions are Lx = 8 and Ly = 4 
with spacing discretization between the nodes in the x and 
y direction as, Nx = 4 and Ny = 4 , resulting in a ground 
structure with 200 elements. In the RTO framework, the 
applied rotating load is circular with ‖Fx‖ = ‖Fy‖ . Other 
details regarding the optimization input parameters can be 
seen in Table 1.

It is observed that the RTO framework results in 
a stable structure unlike some of the solutions of the 
nominal cases e.g. � = ± 0.46 , which illustrates additional 
motivation to account for the worst case loading direction 
in ground structure optimization. In Fig. 6, the compliance 
solution is shown for multiple nominal cases of different 
static directions; each point corresponding to an individual 
topology optimization problem. The result obtained by 
the proposed RTO framework is also shown varying as a 
function of � . When designing for the nominal case, the 
compliance result will be more efficient than the result 
obtained by the RTO case as demonstrated in Fig.  6. 
However, because those structures were only designed for 
a single load case direction they will have significantly 
worse performance for other load directions, which can 
intuitively be seen by examining the final topologies. 
However, the topology for the RTO case is a robust design 
that has improved compliance performance for all possible 
load directions. This claim is further corroborated in the 
following example.

5.2  Square domain with central loading

In this example, a square domain is examined for two cases: 
1) compliance minimization subject to a single load case with 
direction � = 3�∕2 (nominal case) and 2) a point load with 
infinitely many loading directions for � ∈ [−�, �] cover-
ing a circular domain, ‖Fx‖ = ‖Fy‖ . The square domain has 
dimensions of L = 4 and the ground structure is generated 
with Nx = 32 and Ny = 16 discretization of the nodes. The 
results are then analyzed for both cases to evaluate the per-
formance of both structures under the point load of varying 

direction and to illustrate the importance of designing for 
the critical load case scenario. The final structures are plot-
ted in Fig. 7b, c, where the colors and thickness of the bars 
are associated with the normalized cross-sectional area. The 
initial parameters for this study are shown in Table 2.

Observing the topology resulting from both load cases, 
we notice a distinct difference in the structure. While the vol-
ume constraints are always active and equal for both cases, 
the nominal case has fewer and thicker members, while the 
RTO load case has greater and thinner members distributed 
over the entire domain. It is discovered that the RTO frame-
work will result in a more complex structure design than the 
nominal case due to considering changing load direction in 
the optimization objective. When designing for a single load 
case, see Fig. 7b, the final compliance is Cs = 1.5222 with bars 
arranged to redistribute the force caused by the applied down-
ward vertical load. In this structure, the bars are optimized and 
eliminated to place more cross-sectional area in the bars that 
are most important for this one loading condition. In contrast, 
when observing the topology designed for the square domain 
considering an applied point load ranging from � ∈ [−�, �] , 
(Fig. 7c), the final structure contains many members which 
are optimally placed for maximizing stiffness for the critical 
load case directions of the structure. For this problem, the final 
eigenvalues were Cmax = 1.9187 and Cmin = 1.0869 with cor-
responding critical directions of �cr

max
= −�∕2 and �cr

min
= 0.

By designing the structure for the critical load case direc-
tions at each iteration of the design, the structure will automat-
ically obtain reduced compliance for the other load directions. 
We can make sense of this mathematically by observing that 
the critical load case directions correspond to the extrema of 
the compliance function (see Fig. 5), because the extrema of 
compliance are minimized, the values in between the extrema 
will also be reduced due to the continuity of the function. To 
illustrate this, the final topology is extracted for both load-
ing cases and is subject to a forward analysis to analyze the 
compliance performance for a point load with varying direc-
tion � ∈ [−�, �] . As shown in Fig. 7d, the compliance for 
most of the load directions is significantly lower for the struc-
ture designed for to RTO case (red) than that of the structure 

Table 1  Topology optimization parameters for Beam domain

Elastic modulus, E 1.0
Number of GS bars, N

bar
200

Initial area, x
ini

0.0346
Maximum area, x

max
0.074

Minimum area, x
min

0.0013
Volume limit, V

max
1.0

Move parameter, � 1.3287 × 10−5

Convergence tolerance 1 × 10−8

End filter, �
f

0.001
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designed by the nominal case (blue). Only at the direction 
� = n�∕2 with n ∈ ℤ does the single load case have slightly 
better compliance performance and that is due to it being the 
load case that was considered during optimization, see Fig. 7e. 
This corroborates our earlier remarks that even small changes 
in the applied loading direction can cause significant decrease 
in the structural performance, which motivates the importance 
for considering the critical load case direction in the topology 
optimization framework.

5.3  Tower under elliptical load cases

This following example aims to demonstrate the influence of 
the shape of the infinite loading domain on the topology by 
considering the same ground structure subject to two differ-
ent elliptical loading cases. The first elliptical loading case 
is defined by the basis vectors Fx = [5, 0]T and Fy = [0, 1]T 
and the latter is defined by Fx = [1, 0]T and Fy = [0, 5]T . 

The elliptical load cases are subject on the center node on 
top of the tower domain; the domain has dimensions of 
Lx = 2 and Ly = 6 with nodal discretizations of Nx = 6 and 
Ny = 36 . The optimization parameters are shown in Table 3.

The optimized structures corresponding to the applied 
elliptical load case are shown in Fig.  8. The results 
obtained by the first elliptical loading in Fig. 8a have a final 
compliance of Cmax = 14.1337 and Cmin = 0.1833 , which 
are associated to the critical load case directions of �cr

max
= 0 

and �cr
min

= −�∕2 . The critical load case direction that is 
associated with the worst case compliance is in the direction, 
where the elliptical load has the largest magnitude, as 
expected. For the second elliptical loading problem, Fig. 8b, 
the compliance results are Cmax = 0.8146 and Cmin = 0.7595 
corresponding to directions �cr

max
= �∕2 and �cr

min
= 0 . In 

this example, the critical load direction also corresponds 
to the maximum loading magnitude, however, the critical 
compliance values are closer together in magnitude, which 
highlights the importance of considering both critical 
compliance in the objective function. The flexibility of the 
loading parametrization is demonstrated in this example 
where it is shown that changes in the loading basis vectors 
can cause significant differences in the final topology.

5.4  Disk with multiple varying loads

In this example, we demonstrate the generality of the 
framework in allowing for multiple point loads varying in 
the same direction. We take advantage of this feature and 
examine the significance of multiple varying point loads 
on a domain by analyzing two cases of the disk domain: 

Fig. 6  Depiction of beam with central loading. (a) ground structure 
generation for the rectangular domain; (b) loading and boundary con-
ditions on the beam domain; (c) optimal topologies with bars in com-

pression (red) and bars in tension (blue) and the final compliance of 
the proposed robust case versus the nominal cases

Table 2  Topology optimization parameters for square domain

Elastic modulus, E 1 × 105

Number of GS bars, N
bar

35,368
Initial area, x

ini 4.6068 × 10−8

Maximum area, x
max 4.6068 × 10−4

Minimum area, x
min 4.6068 × 10−12

Volume limit, V
max

0.0018
Move parameter, � 4.6068 × 10−4

Convergence tolerance 1 × 10−8

End filter, �
f

0.002
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(1) the disk domain subject to two varying point loads and 
(2) the disk domain subject to four varying point loads, 
see Fig.  9 for details. We also examine the influence 
of changing the magnitude of Fy in four examples, see 
Figs. 10 and 11 for the loading cases. This study allows us 
to demonstrate the validity of our approach in solving the 
maximum eigenvalue optimization problem with smooth 
convergence. The disk domain is defined to have an outer 
radius, r1 = 100 and an inner radius, r2 = 20 with all nodes 
laying on the inner radius fixed. The optimization input 
parameters can be seen in Table 4.

The final objective values are summarized in Table 5, where 
the left most column describes the loading conditions for Cases 
1 and 2 as described in their corresponding Figs. 10 and 11. For 
case 1 it is observed that as the load magnitude increases so does 
the height of the structure, as seen in Fig. 10, to account for the 
y-direction component of the critical direction. For case 2, we 
notice a significant change in the geometric layout of the truss 
bars as the elliptical load domain varies. When the load domain 
becomes circular at ‖Fx‖ = ‖Fy‖ , the eigenvalues coalesce dur-
ing optimization due to the symmetry of the domain and loading 
conditions. We observe that even during eigenvalue coalescence 
we achieve smooth convergence of our objective function, see 
Fig. 12. This particular case demonstrates the efficiency of the 
proposed formulation to handle repeated eigenvalues and con-
verge to a result that takes both critical loading directions into 
consideration.

5.5  Hook with distributed load

The Hook example aims to showcase the proposed frame-
work for a distributed rotating load varying with the same 
� with Fx = [1/100,  0]T, and Fy = [0, −1/25]T on an engi-
neering domain. A hook domain is examined with a ground 
structure mesh generated by GRAND with level-one 

Fig. 7  Illustration of the square domain example examining the 
results achieved by accounting for a single load case versus the infi-
nite load case. a The square domain with a circular load domain 
located in the center; b topology achieved by considering a single 

load case, where � = 3�∕2 ; c topology achieved by the proposed 
framework considering a circular load case � ∈ [−�,�] ; d forward 
analysis of the extracted topologies; e close-up of the minimum com-
pliance of the static case and the extrema of the infinite load case

Table 3  Topology optimization parameters for the Tower

Elastic modulus, E 1 × 106

Number of GS bars, N
bar

11,526
Initial area, x

ini 8.6324 × 10−8

Maximum area, x
max 8.6324 × 10−4

Minimum area, x
min 8.6324 × 10−12

Volume limit, V
max

0.0013
Move parameter, � 8.6324 × 10−6

Convergence tolerance 1 × 10−8

End filter, �
f

0.0012
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connectivity (Zegard and Paulino 2014). To generate solu-
tions that are practical from a manufacturing sense, lay-
out constraints are imposed on the bars to enforce regions 
where all the bars must have the same cross-sectional area. 
The optimization parameters for this problem are found in 
Table 6.

5.5.1  Layout constraint

The layout constraint implementation here is based off 
previous work in the continuum setting, which imposed 
pattern gradation through layout constraints (Stromberg 

et al. 2011). To enforce layout constraints in the ground 
structure setting, we rewrite the formulation in terms of 
the auxiliary variables y , which serve as the new design 
variables for the layout constraint framework. The design 
variables of the original formulation, x , are written as a 
function of a reduced vector of auxiliary variables, y , using 
a transformation matrix P . The optimization problem is 
written as follows:

where

The transformation matrix P is a binary matrix that maps 
each element of the vector y to a single element of the vec-
tor x . This implies that the box constraints are equivalent 
for both variables. For more information on the sensitivity 
analysis of this framework see Appendix D.

To illustrate the application of the layout constraint 
framework, consider the simple truss shown in Fig. 13. 
The structure shown has three members, two of which are 

(40)

min

y
C(x(y)) = F⊤u(x(y))

s.t. L⊤x(y) − V ≤ 0

ymin ≤ yi ≤ ymax

,

(41)x(y) = Py.

Fig. 8  Tower domain subject to an elliptical load case. a Elliptical load case I and the resulting topology; b Elliptical load case II and the final 
topology

Table 4  Topology optimization parameters for the disk domain

Elastic modulus, E 1 × 104

Number of GS bars, N
bar

1,116
Initial area, x

ini 4.8020 × 10−5

Maximum area, x
max 4.8020 × 10−1

Minimum area, x
min 4.8020 × 10−9

Volume limit, V
max

4.44
Move parameter, � 4.8020 × 10−5

Convergence tolerance 1 × 10−6

End filter, �
f

0.002
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contained in the same LC. For this case we can write Eq. 41 
as follows:

Here, it is clear to see how the linear mapping is used to 
correlate the cross-sectional areas to the auxiliary variables 
such that layout constraint regions are associated with the 
same design variable. This reduces the number of design 
variables and enforces regions with the same cross-sectional 
areas.

Additional details for this problem include a damping 
strategy implemented in the OC update scheme similarly to 
Giraldo-Londoño and Paulino (2021).

Here, � is the damping parameter, yoc is the vector of design 
variables calculated by OC, yk and yk−1 are the vectors of 
design variables damped in iterations k and k − 1 . This was 
implemented to speed up convergence on some of the hook 
examples.

Four cases of layout constraints on the hook domain are 
examined as shown in Fig. 14. The influence of the layout 

(42)
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

1 0

0 1

0 1

⎤
⎥
⎥
⎦

�
y1
y2

�

(43)yk = �yk−1 + (1 − �)yoc

constraints are observed in the optimized structures, which 
obtain distinct members in the location of the layout con-
straints. By comparing Case 1 and Case 2 of the layout 
constraints, we observe that because the inside of the hook 
requires thicker elements in Case 1, that when we impose a 
layout constraint on members on the inside of the hook, as 
in Case 2, the entire region will have a high cross-sectional 
area. It is observed that radial elements arise naturally in 
Case 1 and thus the scenario imposing individual radial lay-
out constraints was explored in Case 3. In Case 4, the most 
number of elements are restricted in a single layout con-
straint. When comparing the compliance of the optimized 
structures in Fig. 14c, we see the most optimal of the four 
structures is Case 1 as expected due to it being subject to 
the least number of layout constraints. The second most effi-
cient is the structure of Case 3 which took advantage of the 
naturally arising radial element features in Case 1 by impos-
ing by imposing 18 layout constraints on those areas. The 
compliance results of Case 2 and Case 4 indicate that poorly 
chosen layout constraints or one larger layout constraint may 
lead to drawbacks in structural efficiency.

Furthermore, the results are examined more closely in 
the histogram in Fig. 15 comparing the normalized cross-
sectional areas of the 251 bars in Case 3 associated with 
layout constraints and the same bars in Case 1. The results in 

Fig. 9  Disk with multiple 
varying loads. a the geometry 
of the disk domain; b the gener-
ated ground structure mesh; c 
case 1 loading and boundary 
conditions; d case 2 loading and 
boundary conditions
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the histogram clearly illustrate the benefit of applying layout 
constraints in the ground structure setting. It is observed 
in case 1 that the radial bars were already tending toward 
similar areas in the radial bar regions and by imposing those 
regions as layout constraints we arrive at element areas with 
less variation ideal for engineering purposes.

5.6  Circular domain with constrained loading

Here, we present a circular domain with a radius of 5 units 
with a load applied to the center of the domain, which can 
vary within the prescribed loading bounds defined by �r . 
Our domain is composed of 110 elements arranged in the 
way shown in Fig. 16 and four examples are run each with 
a different constraint on the loading direction. For more 
information on the example parameters see Table 7.

We present this example due to the symmetries along 
both the x and y axis. Not only does this invoke the repeated 
eigenvalues but it also leads to oscillation of the critical load 
case direction on the bound. Here, we demonstrate that our 
proposed framework can handle these numerical instabili-
ties; generating results that are robust and consider a range of 
admissible loading.

In addition, to ensure optimal performance of the MMA 
optimizer, we impose a normalization on the design variables 

Fig. 10  Results from Case 
1 of the disk domain a 
topology resulting from 
‖F

y
‖ = 0.05‖F

x
‖ ; b 

topology resulting from 
‖F

y
‖ = 0.25‖F

x
‖ ; c topology 

resulting from ‖F
y
‖ = 0.5‖F

x
‖ ; 

d topology resulting from 
‖F

y
‖ = ‖F

x
‖

Table 5  Objective values of 
disk domain examples

Compliance objective value

Case 1 Case 2

a 0.63 9.29
b 1.07 10.30
c 2.05 12.06
d 5.81 15.01
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such that they lie between tmin = 0.1 and tmax = 100 . We do 
this by transforming the design variables by Eq. 44

where x is the new set of normalized design variables and 
t is the original set of design variables. The coefficients a0 
and a1 are defined as follows:

and

(44)x(t) = a0 + a1t,

(45)a0 = −

(
tminxmax − tmaxxmin

tmax − tmin

)

This normalization also impacts the sensitivity analysis by 
a factor of a1 as shown in Eq. 47:

where index i refers to the pertinent variable. The results of 
this example are shown in Fig. 17 with four different topol-
ogies each corresponding to a different constraint on the 

(46)a1 =
xmax − xmin

tmax − tmin

.

(47)
�xi

�ti
= a1,

Fig. 11  Results from case 
2 of the disk domain a 
topology resulting from 
‖F

y
‖ = 0.25‖F

x
‖ ; b topology 

resulting from ‖F
y
‖ = 0.5‖F

x
‖ ; 

c topology resulting from 
‖F

y
‖ = 0.75‖F

x
‖ ; d topology 

resulting from ‖F
y
‖ = ‖F

x
‖
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loading direction. We observe that as the range on � increases 
so does the number of bars in a fan like fashion. The thin 
bars that lie outside of the load range are placed there as a 
result of the robust topology optimization framework and the 
user specified end filter. In the case where �r = 0 , in Fig. 17, 
the resulting topology is equivalent to what is achieved in the 
nominal case, where the load is applied in the x direction. 
The final compliance for these examples increases as the 
range of admissible loads increases, these values are shown 
in Table 8. To view the convergence plots of these examples 
see Fig. 18. It is observed that as the range of admissible 
angles decreases it takes more iterations to converge, this 
is a result from the oscillation of the critical load case on 
the bound.

6  Conclusion

In this paper, a deterministic RTO approach is presented 
for ground structure networks. The optimization problem of 
finding the critical load case direction associated with the 
maximum compliance was shown to be equivalent to a max-
imum eigenvalue problem. Here, we present an approach 
for treating the maximum eigenvalue function in an RTO 
framework by the � smooth maximum regularization func-
tion to treat the non-smoothness of the objective function. 

Fig. 12  Convergence details of the case 2 of the Disk domain with 
‖F

y
‖ = ‖F

x
‖ a convergence history of the eigenvalues; b convergence 

history of the objective function

Table 6  Topology optimization parameters for the Hook domain

Elastic modulus, E 1 × 104

Number of GS bars, N
bar

2,687
Initial area, x

ini 9.05 × 10−5

Maximum area, x
max

1.11
Minimum area, x

min 1 × 10−12

Volume limit, V
max

1
Move parameter, � 9.05 × 10−5

Convergence tolerance 1 × 10−8

End filter, �
f 10−4

Damping parameter, � 0.7

Fig. 13  Simple truss illustrating the LC constraint concept
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Fig. 14  Results of the Hook domain a loading (shown in red) and 
boundary conditions; b ground structure mesh; c the number of total 
restricted elements in each layout constraint case; d layout constraint 

designs for the four cases (each color corresponding to a layout con-
straint) and e their resulting optimized structures
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Fig. 15  Histogram of the normalized cross-sectional areas for select 
elements in Case 1 (top) and for the same elements in Case 3 (bot-
tom)

Table 7  Topology optimization parameters for the circular domain

Elastic modulus, E 1
Number of GS bars, N

bar
110

Initial area, x
ini 1.8349 × 10−3

Maximum area, x
max 1.0 × 10−12

Minimum area, x
min

0.2
Volume limit, V

max
1

Convergence tolerance 1 × 10−8

End filter, �
f 1.0 × 10−4

Table 8  Objective values of 
the Circular domain examples 
subject to a range of admissible 
loads

Circular domain objective value

�
r

Compliance

a 0 25.00
b �∕1800 25.35
c �∕36 29.44
d �∕6 46.75

Fig. 16  The loading and boundary conditions of the circular domain 
subject to constrained loading

Fig. 17  The results of the 
circular domain subject to con-
strained loading for a the case 
when �

r
= 0 ; b the case where 

�
r
= �∕1800 ; c the case when 

�
r
= �∕36 ; d the case when 

�
r
= �∕6
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The results confirm our approach for designing structures 
with low compliance for all possible load directions. The 
structures are shown to be exceedingly more reliable in 
terms of compliance performance for all possible load case 
directions versus the conventional topology optimization 
considering a single load case direction. The flexibility and 
control of the loading parameterization is shown to describe 
a wide variety of loading domains including: elliptical load 
domains, multiple varying point loads, constrained varying 
loads, and distributed rotating loads. We conclude that the 
proposed framework is an effective approach when con-
sidering loads with rotating direction or uncertainty in the 
direction to design truss structures that are both efficient 
and robust.

Appendix A

Nomenclature

A  Real symmetric matrix
B  Matrix with nominal loads
C  Compliance
Cmax  Maximum compliance
Cmin  Minimum compliance
E  Young’s modulus
f�  �-regularization function
fp  P-norm regularization function
Fx  Basis load vector in x direction
Fy  Basis load vector in y direction
F  Load vector
FEA  Finite element analysis

Fig. 18  The convergence of the circular domain subject to constrained loading for a the case when �
r
= 0 ; b the case where �

r
= �∕1800 ; c the 

case when �
r
= �∕36 ; d the case when �

r
= �∕6
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g  Volume constraint
L  Lagrangian
L  Vector of bars lengths
n  Unit vector with load direction
OC  Optimality Criteria method
P  Binary mapping matrix
p  P-norm regularization parameter
RTO  Robust topology optimization
r  Vector with worst load case direction
T  Compliance matrix
U  Displacements vector
Ux  Displacements vector in x direction
Uy  Displacements vector in y direction
vi  Eigenvector i of a matrix
Vmax  Maximum volume
x  Vector of design variables
xini  Cross-sectional area of element i
xmin  Minimum design variables magnitude
xmax  Maximum design variables magnitude
y  Vector of auxiliary variables
�f   Filter cutoff parameter
�  Dimensionless �-regularization parameter
�  Lagrange multiplier
�i  Eigenvalue i of a matrix
�  Load angle
�r  Load angle range
�rot  Rotation angle of load domain basis
�cr
min

  Critical angle of minimum compliance
�cr
max

  Critical angle of maximum compliance

Appendix B

P‑norm regularization

In addition to the �-regularization function other 
regularization techniques can be used to satisfy the 
requirements made in Remark 1. One of these regularization 
functions is the p-norm function, which can be expressed in 
terms of eigenvalues as follows:

The p-norm is a smooth maximum regularization function 
that will more closely approximate the max(�1, �2) as 
p → ∞ . Because the p-norm is constructed by a summation 
terms of the eigenvalues it is observed that the function is 
smooth and the derivative exists. To further illustrate this for 
the repeated eigenvalue case, the derivative of the p-norm 
function is derived analytically.

(B1)fp(�1(x), �2(x)) =
(
�1

p + �2
p
)1∕p

.

By taking the partial derivatives of the function with respect 
to the eigenvalues, we arrive at the following expressions:

By taking �1 = �2 for the repeated eigenvalue case, we arrive 
at the following simplification:

With this information, Eq.  B2 can be simplified and 
composed of summations of the derivatives of eigenvalues. 
Under the implications made in Remark 1, the summations 
of repeated eigenvalues are continuous and thus their 
derivatives exist. Thus, allowing us to have accurate 
sensitivity information for all components of the p-norm 
function.

Appendix C

Eigenvalue problem for the spherical load case

The equations shown here are presented to set up the 
optimization problem for the three-dimensional case. We 
begin by defining the load parameterization through relating 
the cartesian coordinates to the spherical polar coordinates 
by

where � ∈ [−�, �] and � ∈ [0, �] .  The loading 
parameterization for the 3-D case representing a spherical 
load may be expressed as follows:

The vectors Fx, Fy, and Fz correspond to the basis vectors 
of the spherical loading description. Similarly to the two-
dimensional case, the three-dimensional case for finding 
the critical load direction for the worst case compliance 

(B2)d

dx
[fp(�1(x), �2(x))] =

�fp

��1

��1

�x
+

�fp

��2

��2

�x

(B3)
�fp

��1
=
(
�
p

1
+ �

p

2

) 1

p
−1
�
p−1

1

(B4)
�fp

��2
=
(
�
p

1
+ �

p

2

) 1

p
−1
�
p−1

2

(B5)
�fp

��1
=

�fp

��2
=
(
2�

p

1

) 1

p
−1
�
p−1

1

(B6)
d

dx
[fp(�1(x), �2(x))] =

�fp

��1

(
��1

�x
+

��2

�x

)

(C7)

x = sin� cos �

y = sin� sin �

z = cos�,

(C8)F(�, �, x) = Fx sin� cos � + Fy sin� sin � + Fz cos�
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is also equivalent to a maximum eigenvalue problem. The 
compliance objective for this problem may be expressed as 
follows:

where

Equivalent to Eq.  6, the optimization problem for 
determining the worst case loading direction for the spherical 
load is a maximum eigenvalue problem. The eigenvalues 
of the compliance matrix T correlate to the principal worst 
case compliances and their corresponding eigenvector to the 
critical loading directions.

Appendix D

Sensitivity analysis of the layout constraint 
framework

The sensitivity of the objective function in Eq. (40) is 
obtained by applying the chain rule to the expression.

In index notation, we write the following:

Considering that �yj∕�yk = �jk and Pij�jk = Pik we obtain

Substituting Eqs. (D15) in (D12), we arrive at the following:

Similarly for the constraint function we have

(C9)C(x, �) = nTTn,

(C10)n =

⎡
⎢
⎢
⎣

sin� cos �

sin� sin �

cos�

⎤
⎥
⎥
⎦

(C11)T =

⎡
⎢
⎢
⎣

UxKUx UxKUy UxKUz

UyKUx UyKUy UyKUz

UzKUx UzKUy UzKUz

⎤
⎥
⎥
⎦

.

(D12)
�C

�y
=

�C

�x

�x

�y
.

(D13)xi =Pijyj

(D14)
�xi

�yk
=Pij

�yj

�yk

(D15)
𝜕x

𝜕y
= P⊤.

(D16)
𝜕C

𝜕y
= P⊤ 𝜕C

𝜕x

Acknowledgements The authors acknowledge the financial support 
given by NSF grant No. 2105811 and the Brazilian agency CNPq 
(National Council for Research and Development). We are also grateful 
for the support granted by the Margareta Engman Augustine endow-
ment at Princeton University.

Declarations 

Conflict of interest The authors declare that they have no Conflict of 
interest.

Replication of results To reproduce the numerical results, the authors 
refer the reader to the input parameters table for each example as well 
as the optimization formulation in Sect. 3, which discusses the imple-
mentation in detail.

References

Bae KR, Wang S (2002) Reliability-based topology optimization. In: 
9th AIAA-ISSMO symposium on multidisciplinary analysis and 
optimization, p 5542

Bendsøe MP (1995) Optimization of structural topology, shape, and 
material, vol 414. Springer, Cham

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods 
Appl Mech Eng 71(2):197–224

Bendsoe MP, Sigmund O (2013) Topology optimization: theory, meth-
ods, and applications. Springer, Cham

Ben-Tal A, Nemirovski A (1997) Robust truss topology design via 
semidefinite programming. SIAM J Optim 7(4):991–1016

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization, vol 28. 
Princeton University Press, Princeton

Beyer HG, Sendhoff B (2007) Robust optimization-a comprehensive sur-
vey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

Biswas K, Kumar S, Banerjee S, Pandey AK (2021) Smu: Smooth activa-
tion function for deep networks using smoothing maximum technique. 
Preprint at http:// arxiv. org/ abs/ 2111. 04682

Chandu SV, Grandhi RV (1995) General purpose procedure for reliability 
based structural optimization under parametric uncertainties. Adv Eng 
Softw 23(1):7–14

Chen X, Qi H, Qi L, Teo K-L (2004) Smooth convex approximation to the 
maximum eigenvalue function. J Global Optim 30(2):253–270

Cherkaev E, Cherkaev A (2008) Minimax optimization problem of struc-
tural design. Comput Struct 86(13–14):1426–1435

Da Silva G, Beck AT, Cardoso EL (2018) Topology optimization of con-
tinuum structures with stress constraints and uncertainties in loading. 
Int J Numer Methods Eng 113(1):153–178

De S, Hampton J, Maute K, Doostan A (2020) Topology optimization under 
uncertainty using a stochastic gradient-based approach. Struct Multi-
disc Optim 62(5):2255–2278

Dunning PD, Kim HA (2013) Robust topology optimization: minimization 
of expected and variance of compliance. AIAA J 51(11):2656–2664

Dunning PD, Ovtchinnikov E, Scott J, Kim HA (2016) Level-set topology 
optimization with many linear buckling constraints using an efficient 
and robust eigensolver. Int J Numer Methods Eng 107(12):1029–1053

Giraldo-Londoño O, Paulino GH (2021) PolyDyna: a matlab implemen-
tation for topology optimization of structures subjected to dynamic 
loads. Struct Multidisc Optim 64(2):957–990

(D17)
𝜕g

𝜕y
= P⊤ 𝜕g

𝜕x
.

http://arxiv.org/abs/2111.04682


A smooth maximum regularization approach for robust topology optimization in the ground… Page 23 of 23 136

Gravesen J, Evgrafov A, Nguyen DM (2011) On the sensitivities of multiple 
eigenvalues. Struct Multidisc Optim 44(4):583–587

Holmberg E, Thore CJ, Klarbring A (2015) Worst-case topology optimiza-
tion of self-weight loaded structures using semi-definite programming. 
Struct Multidisc Optim 52(5):915–928

Holmberg E, Thore CJ, Klarbring A (2017) Game theory approach to robust 
topology optimization with uncertain loading. Struct Multidisc Optim 
55(4):1383–1397

Jansen M, Lombaert G, Schevenels M (2015) Robust topology optimization 
of structures with imperfect geometry based on geometric nonlinear 
analysis. Comput Methods Appl Mech Eng 285:452–467

Jensen HA (2005) Design and sensitivity analysis of dynami-
cal systems subjected to stochastic loading. Comput Struct 
83(14):1062–1075

Johnson SG (2007) The NLopt nonlinear-optimization package. https:// 
github. com/ steve ngj/ nlopt

Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Relia-
bility-based topology optimization. Struct Multidisc Optim 
26(5):295–307

Lewis AS, Overton ML (1996) Eigenvalue optimization. Acta Numer 
5:149–190

Maute K, Frangopol DM (2003) Reliability-based design of 
mems mechanisms by topology optimization. Comput Struct 
81(8–11):813–824

Michell AGM (1904) Lviii the limits of economy of material in frame-
structures. London Edinburgh Philos Mag J Sci 8(47):589–597

Nishioka A, Kanno Y (2023) Smoothing inertial method for worst-
case robust topology optimization under load uncertainty. Struct 
Multidisc Optim 66(4):82

Overton ML, Womersley RS (1995) Second derivatives for optimizing 
eigenvalues of symmetric matrices. SIAM J Matrix Anal Appl 
16(3):697–718

Reddy MV, Grandhi RV, Hopkins DA (1994) Reliability based struc-
tural optimization: a simplified safety index approach. Comput 
Struct 53(6):1407–1418

Rozvany GI (2009) A critical review of established methods of 
structural topology optimization. Struct Multidisc Optim 
37(3):217–237

Schuëller GI, Jensen HA (2008) Computational methods in optimi-
zation considering uncertainties-an overview. Comput Methods 
Appl Mech Eng 198(1):2–13

Senhora FV, Menezes IF, Paulino GH (2023) Topology optimization 
with local stress constraints and continuously varying load direc-
tion and magnitude: towards practical applications. Proc R Soc A 
479(2271):20220436

Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in struc-
tural optimization problems. Struct Optim 8(4):207–227

Shapiro A, Fan MK (1995) On eigenvalue optimization. SIAM J Optim 
5(3):552–569

Sigmund O, Maute K (2013) Topology optimization approaches. Struct 
Multidisc Optim 48(6):1031–1055

Stromberg LL, Beghini A, Baker WF, Paulino GH (2011) Applica-
tion of layout and topology optimization using pattern gradation 
for the conceptual design of buildings. Struct Multidisc Optim 
43:165–180

Svanberg K (2002) A class of globally convergent optimization meth-
ods based on conservative convex separable approximations. 
SIAM J Optim 12(2):555–573

Thanedar PB, Kodiyalam S (1992) Structural optimization using proba-
bilistic constraints. Struct Optim 4(3):236–240

Thore CJ, Holmberg E, Klarbring A (2017) A general framework for 
robust topology optimization under load-uncertainty including 
stress constraints. Comput Methods Appl Mech Eng 319:1–18

Torii AJ, Faria JRD (2017) Structural optimization considering small-
est magnitude eigenvalues: a smooth approximation. J Braz Soc 
Mech Sci Eng 39(5):1745–1754

Zegard T, Paulino GH (2014) Grand–ground structure based topol-
ogy optimization for arbitrary 2d domains using matlab. Struct 
Multidisc Optim 50:861–882

Zhao J, Wang C (2014) Robust topology optimization under loading 
uncertainty based on linear elastic theory and orthogonal diago-
nalization of symmetric matrices. Comput Methods Appl Mech 
Eng 273:204–218

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

	A smooth maximum regularization approach for robust topology optimization in the ground structure setting
	Abstract
	1 Introduction
	2 Maximum eigenvalue function
	2.1 Uncertainty loading
	2.2 Repeated eigenvalue example
	2.2.1 General case
	2.2.2 Particular case

	2.3 Smooth maximum regularization

	3 Optimization formulation
	3.1 Unconstrained loading
	3.2 Constrained loading

	4 Sensitivity analysis
	5 Numerical results
	5.1 Beam with central loading
	5.2 Square domain with central loading
	5.3 Tower under elliptical load cases
	5.4 Disk with multiple varying loads
	5.5 Hook with distributed load
	5.5.1 Layout constraint

	5.6 Circular domain with constrained loading

	6 Conclusion
	Appendix A
	Nomenclature

	Appendix B
	P-norm regularization

	Appendix C
	Eigenvalue problem for the spherical load case

	Appendix D
	Sensitivity analysis of the layout constraint framework

	Acknowledgements 
	References


