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Improving the Ductility of Concrete Beams Reinforced
with Topologically Optimized Steel

Yi Shao'; Tuo Zhao?; Jiayu Yan®; Claudia P. Ostertag*; and Glaucio H. Paulino®

Abstract: To address the sustainability challenges faced by concrete structures, various attempts have been made to optimize the reinforce-
ment layout with a topologically optimized strut-and-tie model (STM). However, most studies have focused on theoretical discussions and the
few available experimental studies have only discussed the prepeak behavior of optimized beams. The postpeak behavior, especially the
ductility of beams with optimized reinforcement, has not been addressed, although it is one critical criterion for ensuring structural safety.
Moreover, current topology optimization methods mostly adopt linear elastic material constitutive behavior, which neglects the intrinsic
strength difference between steel and concrete material and has been found to cause low ductility in concrete beams. To address these
challenges and enhance ductility with optimized reinforcement, this study proposes new frameworks for designing concrete beams with
optimized reinforcement. The first framework enhances the elastic-material model-based optimized reinforcement layout with a postprocess-
ing scheme to enhance concrete compression strut ductility. The second framework develops a new optimization formulation by introducing
an asymptotic nonlinear material model, which considers both the stiffness and strength difference between concrete and steel material. An
experimental and numerical program was conducted to compare the structural performance of concrete beams with optimized reinforcement
from different frameworks. Results show that the new frameworks have limited impact on the peak strength but increase ductility of the
optimized beams. Compared with the design from the conventional bilinear model, the design from the nonlinear model reduces steel
consumption by 8.2%. DOI: 10.1061/JSENDH.STENG-13908. © 2025 American Society of Civil Engineers.

Author keywords: Topology optimization; Nonlinear constitutive model; Ultrahigh-performance concrete (UHPC); Beam; Ductility.

Introduction

Concrete is the most consumed construction material in the world.
To compensate for the low tensile capacity of concrete material,
structural concrete members typically include steel cages with bars
in both longitudinal and transverse directions. In this typical cage
design, steel bars are usually not placed in the most effective paths
for resisting the expected tensile forces under target loading and
supporting conditions. Therefore, this design often consumes more
steel material than the necessary amount, which increases self-
weight and accelerates depletion of natural materials and emission
of global warming gases.
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For both animals and plants, the billions of years of evolution
have generated optimized designs (e.g., bone structure) where ma-
terials are placed only in essential locations. In recent decades,
numerical topology optimization methods have been developed
to reproduce evolution and optimization in a short time. Topology
optimization has been successfully applied in the aerospace and
automotive industries to minimize material usage in metallic struc-
tures (Aage et al. 2017; Yang and Chahande 1995; Zhu et al. 2016).
A few studies have developed topology optimization tools to opti-
mize the reinforcement layout in concrete structures (Gaynor et al.
2013; Jewett and Carstensen 2019; Liang et al. 2002; Xia et al.
2020; Zegard and Paulino 2013). They are mostly focused on theo-
retical discussions, while experimental tests are rare. Jewett and
Carstensen (2019) tested concrete beams with reinforcement lay-
outs optimized by a hybrid bilinear approach. Relative to a standard
strut-and-tie layout, their optimized layout improved structural ef-
ficiency but was not able to achieve high structural ductility, which
is required in structural components.

This study is intended to develop a topology optimization—based
reinforcement design framework that leads to ductile beam behav-
ior. We first review current practice and challenges related to
optimizing reinforcement layouts. We then propose two design
frameworks: (1) one that combines classical bilinear optimization
with a postprocessing tool; and (2) one that develops a new non-
linear optimization method. Experimental and numerical investiga-
tions are pursued to explore the performance of concrete beams
designed based on these two frameworks.

Background

The strut-and-tie model (STM) is a simple and powerful tool for
designing and analyzing structural concrete elements especially
in the cracked states. After cracking, a concrete element can be
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idealized as a truss (Fig. 1) where tension force is carried by steel
reinforcement (i.e., tension ties) and compression force is sustained
by uncracked concrete pieces (i.e., compression struts). STM is typ-
ically used to predict the strength capacity of a concrete structure,
where both concrete struts and steel ties are treated as linear-elastic
members, which means only limited plastic deformation is allowed
in concrete struts and steel ties should not yield (e.g., Schlaich et al.
1987; Williams et al. 2012). This limit of plasticity leads to a
conservative estimation of the structure’s actual load capacity ac-
cording to the lower bound theory of plasticity (e.g., Schlaich et al.
1987; Williams et al. 2012). In other words, material nonlinearity
(or plastic deformation) is expected to cause higher material stress
and stress redistribution, resulting in higher load or deformation
capacity (e.g., Hsu 1988; Zhou et al. 2018).

When designing a concrete member using the STM method, one
of the most important steps is choosing an appropriate strut-and-tie
layout (i.e., truss layout) since different truss layouts can be used
for the same structural configuration, resulting in different levels of
efficiency and safety (Schlaich et al. 1987; Williams et al. 2012).
Schlaich et al. (1987) recommended a truss layout based on elastic
stress distribution, which estimates the initial load paths but still
relies on the engineers’ experiences and judgment in choosing
the layout. To automate and standardize the development of the
truss layout, researchers have explored the possibilities of using
topology optimization techniques.

STM truss layout has been optimized based on truss optimiza-
tion [i.e., the ground structure method (Ali and White 2000, 2001;
Bontempi and Malerba 2001)], continuum optimization (Almeida
et al. 2013; Bruggi 2009, 2016; Herranz et al. 2012; Kwak and Noh
2006; Leu et al. 2006; Liang et al. 2002; Victoria et al. 2011; Xia
et al. 2020; Zhiyi et al. 2018), or a combination of truss and con-
tinuum optimization (Amir and Sigmund 2013; Gaynor et al. 2013;
Zegard and Paulino 2013). When continuum optimization is relied
on, engineers still need to estimate the truss topology and determine
the internal forces. Therefore, the ground structure method is nat-
urally advantageous when optimizing the STM layout. These opti-
mization schemes mostly adopt a single linear elastic material,
while several studies have attempted to improve the material model
by adopting a bilinear relationship (i.e., different modulus under
tension and compression) to simulate steel in tension and concrete
in compression (e.g., Gaynor et al. 2013). These methods, however,
do not consider the strength differences between concrete and steel.

When designing concrete members using the classical STM
method, two main types of steel reinforcement need to be designed.
The first type is steel reinforcement in the tension ties, which car-
ries the tension force across major cracks. Once a truss layout and
the associated member forces are determined, positioning and pro-
portioning the reinforcement is relatively easy and straightforward.
The second type is the transverse reinforcement in the compression
struts, which prevents abrupt splitting failure. In a concrete strut,
compressive stress disperses from the small node zone when they
flow through the struts, resulting in a bottle-shaped stress distribu-
tion [Fig. 1(b)]. When the compressive stresses change direction,
transverse stresses develop to counteract the lateral components of
the inclined compression stresses, causing axial splitting crack
when the transverse tensile force exceeds the concrete cracking
strength. This stress field can also be analyzed using a STM within
the strut [Fig. 1(b)]. A Detailed description of this bottle-shaped
stress distribution was first presented by Guyon (1953). Numerous
studies have investigated the transverse reinforcement detailing in
concrete struts (e.g., Brown and Bayrak 2006; Sahoo et al. 2011;
Singh et al. 2018; Yuan et al. 2018), while different recommenda-
tions are made by design codes (e.g., CEN 2004; ACI 2019). In the
few available studies that have explored the manufacturing of the
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Fig. 1. Schematic of strut-and-tie model: (a) cracked beam; and
(b) compression strut.

topology-optimized concrete structure in the literature, only the
first type of steel was designed while the second was not
(Jewett and Carstensen 2019; Liu et al. 2020). Therefore, the spec-
imens mainly failed due to abrupt splitting failure along the strut
axis (Jewett and Carstensen 2019; Liu et al. 2020). To achieve the
best performance in the optimized specimens, the second type of
reinforcement (i.e., in-strut transverse reinforcement) is included; it
is described in the section “Design of Second Reinforcement
Type.”

Multimaterial Topology Optimization for STM

In this section, we propose a multimaterial topology optimization
model to optimize STM layouts. Two material models are consid-
ered: a bilinear model and an asymptotic nonlinear model. One
challenge that arises when nonlinearities are included in the analy-
sis is how to define the objective function for maximum loading
capacity. Klarbring and Stromberg (2013) maximized the total sta-
tionary potential energy, which is equivalent to minimizing com-
pliance for linear problems and maximizing strain energy for
material nonlinear problems (Zhao et al. 2019, 2020). Further,
the strain energy objective was adopted by Zhao et al. (2023)
for optimization of STM with bilinear material behavior, and it
is adopted in this work for optimal STM layout design considering
nonlinear elastic materials.

Optimization formulation maximizes the structural strain
energy of the system in equilibrium subjected to volume con-
straints. Maximizing structural strain energy is equivalent to
maximizing the strength capacity of the system. The topology op-
timization problem is subjected to prescribed energy, which leads to
robust convergence in solving state equations considering material
nonlinearity. Moreover, the system-prescribed energy guarantees a
target minimum deformation capacity.

The ground structure—based optimization formulation considers
two candidate materials (strut and tie) together with multiple
volume constraints

max J(xy,x;) = Ulx), %, u(x1,x2))
142
Y LIx; = Vi <0, j=1.....n
ieG/

) {Fint(xl’xZau(xI»XZ)) = AMxy, x5, u(x,%;))f o
with

1
fgu(xl,Xz) =2C, M

where x| and x, = vectors of design variables (cross-sectional areas
of truss members) for struts (concrete) and ties (reinforcement),
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respectively, which can be constrained separately; objective func-
tion J = structural strain energy; and u = displacement vector (state
variable) obtained by solving the nonlinear state equations. Eq. (1)
considers a total of n independent volume constraints and denotes
G/ as the set of material indexes for the jth volume constraint where
LTx; indicates the total volume associated with the design variable
x;, with L; being the length vector for the ith material, and V. is
the allowable volume for the jth volume constraint. The main fea-
ture of Eq. (1) is that it can efficiently handle a general setting of
volume constraints (Sanders et al. 2018; Zhang et al. 2018). In par-
ticular, defining material subregions allows control of the locations/
inclination/length scale of the ties according to practical design
requirements, which are elaborated in Appendix IL

To robustly solve the nonlinear state equations in Eq. (1), we
propose an energy control approach together with Newton’s
method and inexact line search where F,, is the internal force vec-
tor, A is the reaction force factor, f) is the vector of given external
forces, and Cj, is the prescribed energy in the structural system. The
proposed approach allows flexible material properties, meaning
that the constitutive model can be linear or nonlinear.

ageg; arctan(bee;)
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0

Fig. 2(a) shows the stress—strain profiles of the present nonlinear
model for tie members. The initial slope of the curve is defined by
the material Young’s modulus Eg.. As the strain increases, the
stress asymptotically reaches a plateau defined by the stress limit
0ye- The stress profile of strut members shown in Fig. 2(b) exhibits
similar asymptotic behavior for given Eg,; and o, The stress—
strain curves show that the stress function is not differentiable at
zero strain; however, the strain energy density function is continu-
ous and differentiable as shown in Figs. 2(c and d).

Optimized STM Layouts

We demonstrate the design optimization results with a simply
supported beam subject to four-point bending. These beams are
considered D-region beams since the distance between the loading
and support points is less than two times the effective depth (ACI
318-19), which are the target application structures for the STM
method. Concrete beams with these designs are analyzed, fabri-
cated, and tested subsequently.

Using the optimization formulation in Eq. (1), we investigate
optimized STM layouts considering three material constitutive
models: standard linear elastic, bilinear, and the presented asymp-
totic nonlinear elastic. The material parameters used in the numeri-
cal simulation are summarized in Table 1. We assume the total
volume of strut members and tie members to be identical in the
three case studies. In addition, we apply the same amount of input
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Asymptotic Nonlinear Elastic Constitutive Model

We present a nonlinear elastic material model based on limit analy-
sis (Chen and Han 2007; Zhao et al. 2019). The strain-stress rela-
tionship for tie members and strut members, respectively, are
defined as follows:

ag;e arctan(bg.g;) if £, 20
Tle: o'l _ { tie ( tie ) . (2)
otherwise
Strut: o= { Astrut arCtan(bstrutei) if i SO (3)
otherwise

where age = 2O—tie/ﬂ—’ by = Etieﬂ—/(zalie)’ Agtrut = 2Usml/7rv and
byt = Esrui™/ (20gut); Otie and 0y = stress limits of the tie mem-
bers and strut members, respectively; E;;. is Young’s modulus of tie
members; and E,, is Young’s modulus of strut members. Based
on the strain-stress relationship formulas in Egs. (2) and (3), we can
derive the explicit strain energy density functions as

1 1 .
{ln <K + 612) —In (K)] if ;20 ()

otherwise

1 1
In +5l2)—ln( >} if £, <0
[ <b§trul bgtrut ' (5)

otherwise
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energy C, = 2 kJ. The selection of this C value is explained in
Appendix III.

Fig. 3(a) shows the linear optimization results. As expected, the
stress profile shows that all strut and tie members have equal stress
values but opposite signs. This design is ideal for materials that
have equal stiffness and strength at compression and tension so
the struts and ties can reach the maximum stress capacity at the
same time, contradicting the strength differences between concrete
and steel. Fig. 3(b) demonstrates the optimized STM layout con-
sidering bilinear material modeling. Notice that the geometrical
complexity of the bilinear result has been greatly reduced compared
with the linear result. Moreover, the stress profile verifies that
the ratio between the strut member and the tie member satisfies
the condition oy /e = \/ Esut/ Evie (Achtziger 1996). While the
tie (i.e., steel reinforcement) stress can be 2.2 times the strut
(i.e., concrete) stress, this strength ratio is still lower than the actual
ratio between steel tensile strength and concrete compressive
strength (i.e., ratio = 3.3). This means that the concrete struts reach
their compressive strength before the steel ties reach their tensile
strength, which contradicting the typical reinforced concrete design
philosophy where steel should reach tensile yield strength before
the concrete crushes (i.e., reach the compressive strength). There-
fore, relatively low structural ductility is expected. Lastly, Fig. 3(c)
shows a representative nonlinear elastic solution. We observe from
the stress profile that struts and tie members reach their strength
limit simultaneously. This behavior is more ideal compared with
linear and bilinear optimization results since it allows the steel
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Fig. 2. Asymptotic nonlinear elastic constitutive material model: (a and b) strain—stress relationship, where E;, and E,, denote Young’s modulus of
tie members and strut members, respectively; oy, and oy, = stress limits of the tie members and strut members, respectively. (c and d) Strain energy

density curves for tie members and strut members, respectively.

Table 1. Material properties used in design optimization of simply supported beam

Strut elastic modulus

Tie elastic modulus

Strut stress limit Tie stress limit

Material modeling Eg (x10° MPa) Eg (x10° MPa) Oy (MPa) e (MPa)
Linear 41.6 41.6 NA NA
Bilinear 41.6 200 NA NA
Nonlinear 41.6 200 —128 420

to yield when concrete crushes, so we can use the high structural
ductility provided by the steel yielding plateau, which is the typ-
ical structural behavior in properly designed reinforced concrete
beams.

Design of Second Reinforcement Type

In this study, the second reinforcement type is designed according
to the following procedure. The transverse reinforcement is most
effective when placed at the regions with the highest lateral tensile
stress (i.e., where a splitting crack initiates). According to Eurocode
2 (CEN 2004), the transverse reinforcement must be at a distance of
approximately L/4 [L = strut length; Fig. 1(b)] from the node.
Note that the amount of transverse reinforcement obtained from
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the suggested framework is considered conservative based on cur-

rent knowledge. The transverse reinforcement must

* Meet minimum transverse reinforcing ratio for compression
struts per ACI 318-19 (ACI 2019): p; min.act = 0.0025/ sin’a,
where a = angle between the transverse reinforcement and
the strut axis;

* Meet minimum transverse reinforcing ratio to avoid abrupt
failure after splitting crack initiation (Sahoo et al. 2011):
pt‘minﬂsplit =0.5- fL'r/(ft,sy ) SiHZOé), where fcr = matrix crack-
ing strength. f, , = transverse reinforcement yield strength.

« Balance the lateral force within the strut. For each inner tension
truss, the lateral force is estimated per Eurocode 2 (CEN 2004)
as: T=0.25-(1—0.7-a/L) - P, with dimensions and forces
shown in Fig. 1(b). Therefore, the steel area for each inner ten-
sion truss shall be greater than: A, iy ension = 1/ f1.5y-
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Fig. 3. Optimized STM layouts: (a) linear elastic material constitutive model; (b) bilinear material model; and (c) asymptotic nonlinear elastic model.
Inset plots are stress profiles for each layout. Red and blue circles represent the stress states of strut members and tie members, respectively. The
geometry of the optimized layouts is symmetrical, so the stress profiles include stress states for only half of the total members.

Experimental and Numerical Program

In this section, the behavior of beams with different reinforcement
layouts is studied using experimental tests and numerical simula-
tion. The numerical simulation is intended to enhance the under-
standing of the experimental results. The reinforcement layouts
are based on the bilinear and nonlinear optimization results. Linear
optimization results are not included for validation, as they neglect
both the stiffness and strength differences between concrete and
steel materials and are not appropriate for practical design (Gaynor
et al. 2013; Du et al. 2019).

Materials

We adopted an ultrahigh performance concrete (UHPC) as the ma-
trix material. This UHPC is a non-proprietary material developed at
University of California, Berkeley (Aghdasi and Ostertag 2018). To
enhance the material toughness, 1% by volume of steel fibers are
added to this UHPC matrix. These steel fibers had a diameter and
length of 0.2 mm and 13 mm, respectively. After casting, the spec-
imens were moisture cured until three days before a test age of
around 35 days. Uniaxial compression tests were applied to three
50 mm cubes, and the average compressive strength was deter-
mined to be 135.3 MPa.

The steel reinforcement was A871 Gr65 steel plates with
9.5 mm thickness. Uniaxial tension tests were performed on steel
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coupons with a cross-section size and gauge length of 9.5 mm x
9.5 mm and 50 mm. Fig. 4 shows the representative stress—strain
curve of the adopted steel. The yielding and ultimate strength of the
reinforcing steel were 515 MPa and 673 MPa, respectively.

Beam Design and Loading

Fig. 5 presents the beam reinforcement design. A tension reinforc-
ing ratio of 3.7% was chosen to fully utilize the high compressive

800
700
600
500
400
300
200
100

Stress [MPa]

— steel

0 3 6 9 12 15
Strain [%]

Fig. 4. Stress—strain curve of the adopted steel.
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Fig. 5. Reinforcement design: (a) optimized reinforcement based on bilinear results; (b) optimized reinforcement based on bilinear results, with
additional transverse steel for struts; (c) optimized reinforcement based on bilinear results and with additional transverse steel for struts—transverse
steel width reduced from (b) considering UHPC tensile strength; and (d) optimized reinforcement based on nonlinear results.

strength and high crushing resistance of UHPC material. Based
on the expected tension force in the midspan bottom tension tie,
the expected compression forces in struts and tension forces in
ties can be estimated based on force ratios from the optimization
results (Fig. 3). The compression strut width is estimated using
C/(fce X t;,), where C = estimated compression force; f ., = effec-
tive compressive strength; and ¢, = beam thickness. According to
ACI 318-19, for a compressive strut with transverse reinforcement,
f e can be conservatively estimated as f., = 0.63 x f/. Similarly,
the tension tie width is estimated using 7/(f, x t,), where T =
estimated tension force; f, = steel strength; 7, = steel plate thick-
ness. Steel yielding strength is adopted for all tension ties and
second transverse reinforcement type except the longitudinal ten-
sion tie at midspan (i.e., between the two nodes near the bottom
center). For this midspan longitudinal tension tie, the ultimate ten-
sile strength is assumed because at the ultimate stage (crushing
point), longitudinal steel at midspan has been observed to reach
ultimate strength in UHPC beam tests (Shao and Billington
2022).
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A total of four beams are designed. The reinforcement of each
beam is made of three parallel layers of steel reinforcement, which
is composed of two identical side layers and one middle layer
(Fig. 5). Fig. 6 is a three-dimensional rendering of the reinforce-
ment design of UHPC-Bilinear. UHPC-Bilinear is designed based
purely on the bilinear optimization result [Fig. 3(b)]. The required
longitudinal tension reinforcement at the bottom is equally divided
by the three reinforcement layers while the inclined reinforcement
is equally divided by the two side layers. For UHPC-Bilinear-
Trans, the second transverse reinforcement type is added to the
middle layer based on the design method outlined in section “Back-
ground.” The splitting resistance from UHPC fiber-bridging is ne-
glected in the beam design. For UHPC-Bilinear-Trans (Reduced),
the needed tension force from the second reinforcement type is es-
timated as 7 = 025 x (1 —0.7xa/L)x P—L - b - f,/2, where
[ 1s the estimated UHPC tensile strength. The first part represents
the estimated lateral force based on Eurocode (CEN 2004), while
the second part represents the estimated splitting resistance pro-
vided by fiber-bridging. UHPC tensile strength (f,) is estimated

J. Struct. Eng.
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Fig. 6. Three-dimensional rendering of reinforcement layout for UHPC-Bilinear.

Fig. 7. Numerical model of UHPC-Bilinear-Trans.

as 5-MPa based on Shao and Ostertag (2023), who adopted the
same material. To be conservative in estimating UHPC splitting re-
sistance, a 50% strength reduction factor is applied to UHPC tensile
strength to consider the randomness of fiber distribution and the
possible occurrence of unfavorable fiber distribution (Duque and
Graybeal 2017). For beam UHPC-nonlinear, the tension reinforce-
ment is designed based on the optimization result [Fig. 3(c)] and
equally divided by three layers. No second transverse reinforcement
type is added. The design of the rib is described in Appendix I.

For each beam design, two identical beams were fabricated and
tested in the CEE Structures Lab at UC Berkeley to verify repeat-
ability. The beams are simply supported and subject to four-point
bending (Fig. 5) at a quasi-static loading rate of approximately
0.02 mm/s. The applied load is recorded by the load cell in the
universal test machine, while the midspan deflection is recorded
by linear variable differential transformer (LVDT).

Numerical Modeling

The numerical simulations were performed based on Abaqus/
Explicit. Finite-element (FE) models were built with simplified
steel reinforcements at full scale, as shown in Fig. 7. Due to the
complexity of the matrix geometry, UHPC parts were meshed using

Table 2. Material properties of steel reinforcement

C3D10M elements with an approximate globe size of 6 mm, while
reinforcements parts were meshed using C3D8R elements with an
approximate globe size of 5-9 mm for different FE models. Rein-
forcements embedded in the UHPC region in the FE models and
displacement-controlled loads of 25 mm were applied.

Constitutive Models

The constitutive relationship for steel reinforcements are described
by a plasticity material model based on the results of uniaxial ten-
sion tests (Fig. 4). For the matrix, a fracture energy—based model
proposed by Shao et al. (2021) was used to predict the behavior of
the UHPC material. Tables 2 and 3 lists the material properties for
the simulation. In ABAQUS, the concrete damaged plasticity
(CDP) model option was adopted and concrete failure was set at
0.15 tensile strain to simulate crack development.

Results and Discussions

Fig. 8 compares the load-displacement responses of a repre-
sentative beam of each design, while Fig. 9 presents the load-
displacement responses of all experimental beams and numerical

Yield strength Ultimate tensile strength Yield strain Elastic modulus Elongation
Grade fym (MPa) fum (MPa) e, (%) E (x10° MPa) s (%)
A871 Gr65 515 673 0.56 206 27
© ASCE 04025018-7 J. Struct. Eng.
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Table 3. Material properties of UHPC

Tensile Compressive Tensile fracture Compressive Tensile localization Elastic
Concrete _strength _ strength _ cmersy fracture energy strain __modulus
type fip (MPa) fl (MPa) Gy (MPa-mm) G. (MPa-mm) rp (%) E (x10° MPa)
UHPC 43 1355 49 185 0.01 437
600 simulation results to show repeatability. Fig. 10 compares the crack
pattern of the representative beams, which is similar to the numeri-
500 cal crack pattern.
All beams behave nearly linearly until a load of around 350 kN,
— 400 when hairline flexural or shear cracks start developing. At the first
é peak load (around 2.5-mm displacement and 470-kN load), trans-
'g 300 verse splitting cracks form along the top compression strut and
= 500 —— UHPC-Bilinear-#1 compressive damage is visible [Fig. 10(a)]. For UHPC-Bilinear,
— . -UHPC-Nonlinear-#1 the load capacity drops relatively quickly after the splitting crack
100 «+«+ UHPC-Bilinear-Trans-#1 initiates. This is expected since only fiber reinforcement is available
— — UHPC-Bilinear-Trans(Reduced)-#1 to resist the splitting crack but it cannot provide the required split-
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Fig. 8. Representative load-deflection responses.
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ting resistance.

After adding transverse reinforcement, UHPC-Bilinear-Trans
reached a second, higher load-capacity peak since adequate split-
ting resistance is provided, which allows the compression strut to
develop higher compression force. This is demonstrated by the
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Fig. 9. Load-deflection responses for both experimental and FE simulation results: (a) UHPC-Bilinear; (b) UHPC-Nonlinear; (c) UHPC-Bilinear-

Trans; and (d) UHPC-Bilinear-Trans (Reduced).
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UHPC-Nonlinear
Side +Middle Layer
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Side Layer

Middle Layer

(d)

Fig. 10. Representative crack patterns: (a) UHPC-Bilinear; (b) UHPC-Nonlinear; (c) UHPC-Bilinear-Trans; and (d) UHPC-Bilinear-Trans
(Reduced). Parts (c and d) show crack pattern against either middle or side layer.
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Fig. 11. Von Mises stress distribution of steel reinforcement: (a) UHPC Bilinear-Trans-FE; and (b) UHPC Bilinear-Trans (Reduced)-FE at peak load.

stress contour shown in Fig. 11(a). The transverse reinforcement
along the top compression strut is heavily stressed, indicating that
it resists the top compression strut splitting failure observed in
UHPC-Bilinear. Even with reduced transverse reinforcement,
UHPC-Bilinear-Trans (Reduced) maintains the load capacity and
forms a load plateau. Comparing these two beams with transverse
reinforcement, UHPC-Bilinear-Trans achieves higher load capacity
but lower ductility, while UHPC-Trans (Reduced) exhibits a
slightly lower load capacity but higher ductility. Additionally, the
transverse steel along the top compression structure in UHPC-
Bilinear-Trans (Reduced) [Fig. 11(b)] is more stressed than the
counterparts in UHPC-Bilinear-Trans [Fig. 11(a)], demonstrating
the effectiveness of reducing the transverse steel to enhance utiliza-
tion efficiency.

UHPC-Nonlinear’s load capacity reduces after reaching the first
peak but at a slower rate. This could be attributed to the advantages

© ASCE
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of considering the strength limit of UHPC and steel material.
Allowing steel to reach the yielding plateau when the compression
strut softens leads to higher ductility. In other words, UHPC-
Bilinear can be treated as an overreinforced beam where the com-
pression strut fails before the steel yields, which is expected to
exhibit low ductility. UHPC-Nonlinear transforms the beam to a
balanced design by allowing the steel to yield when the compres-
sion strut fails, which improves ductility.

Steel Consumption

Table 4 compares steel consumption by the four designs. Compared
with UHPC-Bilinear, the two designs with secondary reinforce-
ment increases steel consumption 27.3% and 32.6%. While these
two designs [UHPC-Bilinear-Trans and UHPC-Bilinear-Trans
(Reduced)] effectively enhance the ductility of UHPC-Bilinear, this
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Table 4. Steel consumption

Steel Relative change to
Name consumption (cm?) UHPC-Bilinear (%)
UHPC-Bilinear 334 —
UHPC-Bilinear-Trans 443 32.6
UHPC-Bilinear-Trans 426 27.3
(Reduced)
UHPC-Nonlinear 307 —8.2

27.3%-32.6% increase in steel consumption could significantly in-
crease costs and enlarge carbon footprints. On the other hand,
UHPC-Nonlinear reduces the steel consumption of UHPC-Bilinear
by 8.2% while increasing postpeak ductility. Therefore, the nonlin-
ear optimization algorithm can be considered an ideal choice for
enhancing ductility without increasing material consumption.

Conclusions

This study aimed at improving the structural ductility of concrete
beams with topologically optimized reinforcement layouts.
Existing bilinear optimization is found to cause low structural duc-
tility First, it only considers the stiffness difference between con-
crete and steel, so concrete struts reach their compressive strength
before steel ties reach their tensile strength, which results in an
overreinforced design and low structural ductility. Second, trans-
verse reinforcement, which is necessary for enhancing the ductility
of compression ties, is not considered. This study proposes two
new design frameworks to address these two challenges.

In the first framework, a postprocessing step is added to the bi-
linear optimization results to provide the compression struts with
transverse reinforcement. Transverse reinforcement effectively re-
sists splitting failure along compression struts, which causes failure
in pure bilinear optimization-based beams. With the transverse
reinforcement, the new beam designs achieve a second, and higher,
peak load after the splitting crack forms, which enhances the struc-
tural ductility of the beam design.

In the second framework, the authors propose a nonlinear top-
ology optimization method that considers the stiffness and strength
difference between the concrete and steel materials, which allows
the concrete struts and steel ties to reach their desired strength si-
multaneously. This means that the beam changes from an over-
reinforced design to an under-reinforced design. Therefore, the
nonlinear solution shows a more gradual load decline than the bi-
linear solution and enhances structural ductility.

While these two frameworks are effective in enhancing the
structural ductility of bilinear beam designs, future studies may
be needed to test the new frameworks on beams with different ma-
terials (e.g., conventional concrete, high-strength concrete) and
geometries.

Appendix I. Rib Design

Surface deformation in the form of ribs is important in generating
bonding between steel reinforcement and the surrounding UHPC or
concrete matrix, ensuring a composite behavior. The overarching
goal of our rib design (Fig. 12) is to match the rib pattern of a
common mild steel reinforcing bar in terms of the rib topology
as well as the ratio between the bearing area (i.e., the cross-
sectional area of the rib perpendicular to the bar axis, 2 X R, X t
in Fig. 12) and the tension-force carrying area (W X ¢t in Fig. 12).
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Fig. 12. Rib design.

To achieve this goal, the authors measured several steel bars
(with diameters of 10-25 mm) in our lab with reference to ACI
408 (ACI 2003) and ASTM A615-16 (ASTM 2016). Once the
width of the reinforcement, W, is determined based on the needed
tension force, the equivalent round (i.e., circular) bar diameter, d beq
can be calculated by the rule of the same tension-force carrying
area: dj, ,, = /2 x W x t/m. The rib spacing (R,) and Rib width
(R,,) are estimated to match those of an equivalent round bar:
R, =0.7xd,;,, and R,, = 0.25 x R,. The needed bearing area
for an equivalent round bar is estimated as Apeypg = 0.06 X
T X dy g X Ry. Then the rib height can be calculated by R, =
(Abearing/2 % t). This methodology generates a rib pattern that
brings bonding force similar to circular bars with an equivalent
diameter. During experiments, no noticeable slippage was observed
between the steel reinforcement and the surrounding matrix. Other rib
design methods engineered for water-jet cutting steel (e.g., Higuchi
et al. 2022) may be adopted; they are not within the scope of
this study.

Appendix Il. Material Subregions

Defining the subregions of struts and ties plays a major role in de-
signing optimized STM layouts. For the present numerical exam-
ples, the design domain is discretized by a 12 x 6 grid, and the
standard symmetry boundary conditions are applied, as shown
in Fig. 13(a). For optimization considering linear and bilinear ma-
terials modeling, the initial ground structures (GSs) for both the
strut layer and the tie layers are identical—full-level GS connecting
each and every node in the design domain.

We investigated three subregion assignments and their influence
on STM layouts, using the asymptotic nonlinear material model.
Our emphasis was on the control of tie inclinations and length
scales. These are important from a practical point of view because
the difficulties in constructing the deep beam highly depend on
the design of ties in the STM. In the first design, both tie and
strut layers have full-level GS; the optimized layout is shown in
Fig. 13(b) with load factor A = 108.47. The load factor defined in
Eq. (1) indicates the loading capacity of the STM design.

In the second design, the strut layer has full-level GS, while the
tie layer assumes the removal of members with an inclination angle
of less than 25°, which is recommended by ACI 318-19 (ACI
2019). The corresponding solution is shown in Fig. 13(c), which
has a less complex layout than the first design. The optimized lay-
out can be further simplified by restricting the members in the ini-
tial GS for the ties. For example, assuming that the minimum
member length is 3, the optimized design is obtained, as shown
in Fig. 13(d). Comparing the three solutions, the latter two impose
additional inclination and length scale constraints in the optimiza-
tion problem. As expected, the load factors of layouts in the second
and the third designs are lower than that of the result in the first
design.
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Fig. 13. Alternative nonlinear optimized STM layouts with flexible inclination/length controls: (a) design domain, boundary, and loading conditions;
(b) optimized design without inclination or length constraints for both struts and ties; (c) optimized layout with inclination constraint for ties, where
lower bound of allowable angle is 25°; and (d) optimized layout with both inclination and length constraints for ties, where lower bound of permissible

angle is 25° and minimum length is 3.

Appendix lll. Selection of Prescribed Energy C,

The selection of Cy depends on the expected nonlinear behavior of
the optimized design. For the asymptotic nonlinear optimization
scheme, choosing a value of C is considered a way of controlling
when both struts and ties reach the yielded stress limit. Here, we
provide a rational approach to estimate the input value C for the
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Ostrut = N.A. ?
2 0
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Fig. 14. Structural analysis of linear optimized design considering:
(a) input Cy = 0.002 kJ and standard linear elastic material model-
ing; (b) input Cy = 0.002 kJ and asymptotic nonlinear material mod-
eling; and (c) input Cy =2 kJ and asymptotic nonlinear material
modeling.
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optimization problems considering the nonlinear material model.
Given a design problem with specific boundary and loading con-
ditions, we first generate a reference topology by standard linear
materials modeling. Since linear materials optimization is insensi-
tive to the input C, we arbitrarily select a value, 0.002 kJ, to obtain
a linear optimized design, as shown in Fig. 14(a). The correspond-
ing stress plot shows that both strut and tie members have constant
stress values. Next, we conduct structural analysis considering
asymptotic nonlinear modeling. For the input Cy, = 0.002 kJ, nei-
ther strut members nor tie members reach the given yield stress
limits [Fig. 14(b)]. After we increase the input energy to 2 kI,
we observe that the stress on the struts reaches its prescribed yield-
ing limit [Fig. 14(c)]. Thus, 2 kJ is selected as the input for non-
linear optimization. Finally, we obtained the nonlinear optimized
design shown in Fig. 3(c).
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