'.) Check for updates

Online journal at:
hitps://asmedigitalcollection.asme.org/appliedmechanicsreviews

E ASME Applied Mechanics Reviews

AS

SETTING THE STANDARD

————

Kirigami Engineering:
The Interplay Between Geometry
and Mechanics

Kirigami, as a scientific concept that emerges with but distinguishes from origami, provides
a paradigm for engineering the mechanical properties of a surface through geometric
analysis. The cutting geometry pattern that enables panel rotations around shared nodes—
by itself or in conjunction with folding geometry that allows panel rotations around shared
edges—yields predictable mechanical responses ranging from two-dimensional (2D) to
three-dimensional (3D) deformations and from shape-fitting to metamaterial functionalities.
This contribution reviews the deterministic relationships between geometry of a kirigami
surface and its mechanical responses under given external loading. We highlight rigid and
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lattice, also known as the Maxwell lattice, where the number of
connections (i.e., constraints) equals the number of degrees-of-
freedom at the unit cell level. Notable instances include the
triangular (i.e., kagome) lattice and the square-rhombus lattice (Fig.
1(d)). The kagome lattice is topologically polarized, which
concentrates floppy modes on one of its edges and stress-bearing
modes on the other edge. The square-rhombus lattice is mechan-
ically nonreciprocal, which breaks the transmission symmetry of a
force between two points of the lattice.

In this paper, we review how the geometry of kirigami surfaces
governs their mechanics. Here, the “geometry” spans not only the
shapes of cuts and panels, cut distributions, intrinsic curvatures, and
pattern symmetries, but also practical considerations such as surface
thickness and the dimension of living hinges. The resulting
“mechanics” include rigid and nonrigid 2D deformations (Sec. 2),
3D deformations involving buckling or folding (Sec. 3), and
metamaterial properties such as topological polarization transfor-
mation, static nonreciprocity, and varying Poisson’s ratio (Sec. 4).

1 Introduction and Motivation

The mechanical properties of a surface can be precisely
engineered by cutting it into a network of interconnected
components with intricate geometry. We call this process kirigami
engineering, the twin of origami engineering [1]. Although kirigami
surfaces can exhibit other distinguishing properties, such as thermal
[2] or electromagnetic [3] characteristics, this contribution focuses
on the interplay of geometry and mechanics (Fig. 1). Ideally, the
distribution of cuts determines the two-dimensional (2D) deforma-
tions of a kirigami surface. For example, convex cuts often lead to
rigid deformations whereas nonconvex cuts result in nonrigid
deformations (Fig. 1(a)). On the other hand, the thickness of a
kirigami prototype significantly influences its three-dimensional
(3D) buckling behavior. Broadly speaking, large thickness generally
stabilizes 2D deformations, while small thickness may induce out-
of-plane buckling (Fig. 1(b)). Furthermore, the intrinsic geometry of
the 2D space where a kirigami surface resides rules its deformation
characteristics. Nonzero Gaussian curvature imposes more con-
straints on the kirigami surface. Thus, nonrigid deformations are
typically inevitable in a non-Euclidean space, while rigid deforma-
tions can be pursued in a Euclidean space (Fig. 1(c)). Lastly, the
unique connectivity within periodic kirigami can give rise to exotic
mechanical properties. This is exemplified by the locally isostatic
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2 On Two-Dimensional Deformations

Since kirigami engineering is performed on a surface, the most
basic deformation mode is the 2D deformation within the surface. In
this case, the kirigami hinges only allow the connecting panels to
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rotate around axes perpendicular to the surface. In theory, the cutting
geometry typically determines the deformation mechanics, either
rigid (i.e., energy-free) or nonrigid (e.g., monostable or bistable),
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Fig. 1 Kirigami engineering: the interplay between geometry and mechanics: (a) a convex pattern undergoing
rigid deformation (left) and a nonconvex pattern undergoing nonrigid deformation (right), (b) athin rotating-square
sheet exhibiting out-of-plane buckling under uniaxial tension (left) and a thick rotating-square plate exhibiting in-
plane rotation under uniaxial tension (right), (¢) a quadrilateral kirigami pattern in a Euclidean space (the plane)
transforming rigidly from a compact square to a deployed circle (left) and a quadrilateral kirigami pattern in a non-
Euclidean space (the sphere) displaying nonrigid shape morphing from a compact spherical square to a deployed
hemisphere (right), and (d) a triangular kirigami pattern exhibiting topological polarization (left) and a quadrilateral
kirigami pattern displaying mechanical nonreciprocity (right)

while practically, the substantial hinge stiffness may hinder the
realization of rigid deformation.

2.1 Nonconvexity and Bistability. A bistable structure is
nonrigid with an energy barrier on its deformation path. Figure 2(a)
illustrates a basic quadrilateral kirigami unit that opens a nonconvex
hole during its early stage of expansion [4]. As the structure expands,
stresses accumulate until the hole reaches a critical configuration, in
which two of its edges become collinear. At this juncture, the
deformed lengths are minimal, corresponding to the peak of an
energy bump. Once this critical state is surpassed, the stresses drop
to zero, and the edges revert to their original lengths. Thereafter, the
hole remains convex, and the deformation energy stays at zero. The
energy landscape depicted in Fig. 2(a) is computed using a
simplified mechanical model that employs linear springs along the
edges and diagonals of the quadrilaterals that can undergo both
extension and compression. This model is a specific case of a more
general framework [5], which incorporates both linear springs and
torsional springs located at the nodal hinges connecting the
quadrilaterals. In the general formulation, the total (dimensionless)
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deformation energy of a quadrilateral kirigami pattern is expressed
as

2
1 [Ixi = X[ = £y N2
E(X],Xz,,XN)M%:</4” +]vczl:(')l (1)

Here, the nodal coordinates x; determine the energy E, by setting the
deformed edge lengths ||x; — x;|| and the opening angles 6; of the
cuts. The geometry of the undeformed kirigami pattern defines the
rest lengths /;; of the linear springs, and it is assumed that all cuts are
initially closed so that the rest angles of the torsional springs are
zero. The displacement energy is averaged over the total number of
linear springs N and the rotation energy is averaged over the total
number of torsional springs N.. A key coefficient, 4, adjusts the ratio
between the rotation energy and the displacement energy. The
deformed nodal positions x; and the corresponding energy E are
obtained by iteratively moving selected control nodes (i.e., a subset
of {x;}) toward target positions and minimizing E. In the idealized
case where the hinges have zero rotational stiffness (4 = 0), the
deformation energy of the quadrilateral kirigami arises solely from
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Fig. 2 Nonconvexity-induced bistability of kirigami structures. (a) Energy landscape of a kirigami unit with a
nonconvex hole [4]. (b) Energy landscapes of a shape-morphing kirigami tessellation with multiple nonconvex holes
under varying rotational stiffness 4 [5]. The data and deformation profiles in (a) and (b) are from bar-and-hinge model
simulations. (c) and (d) Energy landscapes of motif-inspired kirigami patterns with nonconvex cuts [6]. The patternsin
(c) have square cores, while the patterns in (d) have triangular cores. (e) and (f) Phase diagrams showing the ratio of
local minimum energy (at the deployed stable state) to the peak energy (corresponding to the energy barrier),
n=Emin/ Emax, With respect to the scaled hinge thickness t/¢@nd the scaled unit length a/¢9f the kirigami units [6]. The
unit cellin (e) has a square core, while the unit cell in (f) has a triangular core. When =1, the unit cells are monostable.
When 5<1, the unit cells are bistable. (g) Isotropic (with p37m symmetry) and anisotropic (with cm or p1 symmetry)
bistable deformations of generalized motif-inspired kirigami patterns [7]. Dashed—dotted lines: reflection axes;
dashed lines: glide reflection axes; dots: rotation centers. The data and deformation profiles in (¢)—(g) are from finite
element simulations. Panel (a) is adapted with permission from Ref. [4]. Copyright 2021 by CC BY 4.0 license. Panel (b)
is adapted with permission from Ref. [5], Copyright 2019 by Springer Nature. Panels (c)—(f) are adapted with
permission from Ref. [6], Copyright 2016 by Elsevier. Panel (g) is adapted from Ref. [7], Copyright 2024 by CC BY-NC 4.0
license.

the extension or compression of the edges and diagonals, thereby
enabling the convex hole to deploy (theoretically) with zero energy
cost (Fig. 2(a)).

If a kirigami pattern comprises multiple nonconvex cuts, their
collective deployment may yield one or more energy barriers. In
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particular, when a single energy barrier is present, the structure is
bistable upon deployment. Figure 2(b) illustrates such a bistable
pattern (when 4 = 0), achieved by inversely optimizing the cut
distributions within a constrained framework [5]. This approach
ensures that the deployed boundary nodes align with a target curve
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while satisfying the geometric conditions required for closing all the
cuts in an undeployed (compact) state. Consequently, the corre-
sponding quadrilaterals in both the undeployed and deployed
configurations have identical sizes and shapes. Moreover, by
controlling the boundary angles, the shape of the compact pattern
can be finely tailored, enabling a smooth transition from a compact
square to a deployed circle. It should be noted that the bistability
converts to monostability as A increases, which prevents the cuts
from opening (e.g., 4 =0.001 in Fig. 2(b)). The monostability
corresponds to physical prototypes manufactured by laser cutting a
rubber sheet and leaving relatively thick ligaments at the
intersection of cuts (called /iving hinges or compliant hinges) to
connect the quadrilateral panels [5]. In contrast, thin ligaments (e.g.,
4 =10.0001 or 0.00001 in Fig. 2(b)) do not significantly impede
bistability but are more prone to breakage when the prototype is
deployed. The free-form quadrilateral patterns offer an expansive
design space for distributing cuts to achieve shape-morphing
functionality. However, these patterns are not intentionally designed
to be bistable or monostable. The primary goal here is to achieve
target shapes instead of tailoring energy landscapes. Although the
energy envelopes have a single peak when 4 is small, it is challenging
to realize this bistability in solid models with living hinges.
Substantial bistability of a class of periodic kirigami patterns with
nonconvex cuts is verified through finite element simulations and
mechanical tests on perforated rubber sheets—a favorable ligament
thickness can sufficiently trigger bistability and resist fracture upon
deployment [6]. Here we review only the simulation results and refer
to Ref. [6] for the tests on real prototypes. Inspired by ancient
geometric motifs, one of these patterns features square modules with
four oblique lines enclosing a square core (“tiled” cores in Fig. 2(c)).
Atthe specific ratio of ligament thickness to unit length 7/¢ = 0.025,
finite element simulations reveal weak bistability (the lowest curve
in Fig. 2(¢)). In contrast, variant patterns obtained by curving or
rotating the cores (““circular” or “parallel” cores in Fig. 2(¢)) exhibit
significantly enhanced bistability, as demonstrated by simulation
curves with substantial energy barriers (the two higher curves in Fig.
2(c)). The motif-inspired patterns also include a version with
triangular cores (“tiled” cores in Fig. 2(d)) and corresponding
variants produced by curving or rotating the cores (“circular” or
“parallel” cores in Fig. 2(d)). Interestingly, the original triangular
cores exhibit a much higher energy barrier than their variants at
t/¢ = 0.025, which is the opposite of the behavior observed with the
square cores. Furthermore, Figs. 2(e) and 2(f) show that bistability
can be achieved within a finite region of ligament thickness for both
the square and the triangular “parallel” cores. Specifically,
bistability is strong for large a/¢ and small 7/¢, because the cuts
penetrate deeper into nonconvex shapes as a/{ increases and the
rotational stiffness of the ligaments becomes smaller as /¢
decreases. The triangular patterns with “parallel” cores possess
p31m symmetry (with threefold rotations and some rotation centers
off mirrors) and exhibit isotropic dilation upon deployment (Fig.
2(g)). In more advanced developments, these triangular patterns are
generalized to produce various anisotropic bistable deformations
under reduced symmetry—e.g., cm symmetry (with mirrors and
glides but no rotation center) and p/ symmetry (with no mirror,
glide, or rotation center) in Fig. 2(g)) [7]—and even aperiodic
bistable deformations [8]. The local nonconvexity of the cuts
manipulates the nonrigid deformations of these kirigami patterns.
When the patterns are periodic (e.g., those in Figs. 2(c¢) and 2(d)),
their overall behavior mirrors that of the individual unit modules. In
contrast, for a free-form pattern (e.g., that in Fig. 2(b)), the
interactions among the nonconvex cuts influence the overall energy
landscapes, although the rationale behind the presence of only one
energy peak is unclear. In fact, the optimization approach (that
designs the pattern in Fig. 2(b)) can be generalized to further enable
two distinct compact configurations, corresponding to two reverse
ways of closing the quadrilateral holes, in the quadrilateral kirigami
pattern with multiple nonconvex cuts [4]. Under this extended
framework, the designed kirigami pattern exhibits two energy
barriers near the compact states, connected by an intervening
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mechanism. A systematic method for designing the number and
location of the energy barriers (or energy minima) has yet to be fully
developed.

2.2 Compatibility and Rigid Deformation. It is noteworthy
that nonconvexity is neither a sufficient nor a necessary condition for
nonrigid deformations in a kirigami pattern. Nonrigid deformations
arise when the deployment of a nonconvex cut forces the panel edges
to deform due to the geometric confinement (Fig. 1(a), right, and
Fig. 2(a)). In the absence of such confinement, even nonconvex cuts
(e.g., in rotating triangles [9]) can support rigid deformations.
Conversely, although a single convex cut is generally rigidly
deployable—yielding rigidly deployable periodic patterns (e.g.,
rotating squares [10])—the overall deformation of free-form
patterns with multiple convex cuts can be either rigid or nonrigid,
depending on the interactions among the cuts. Such interactions are
quantified by a compatibility condition (or termed loop condition)
for a class of free-form patterns named planar quadrilateral
kirigami (PQK) [11]. While the PQK is composed of arrayed
quadrilateral panels and cuts, it is free-form in the sense that the
panels and cuts can be arbitrary quadrilaterals as long as the cuts are
convex, i.e., they can close to a straight line.

Figure 3(a) shows a 3-by-3 PQK pattern with four interconnected
cuts forming a loop. Each cut is a convex quadrilateral, satisfying
a;i+b;=c;+d; for i =1,2,3,4, so that they can individually
deploy with one degree-of-freedom, characterized by an opening
angle o; or f§; (icanbe 1,2, 3, or 4). To obtain the loop condition, we
suppose that the collective deployment of the four cuts isrigid. Then,
the connections between the cuts imply that the opening angle of one
cut, e.g., f;, determines the opening angles of its neighboring cut, e.
g., a4 and f3,4, expressed by

o =1 — P 2)
and
cos f; = gi(cos Biy) 3

respectively, where the index i cycles from 1 to 4 (withi + 1 taken as
1 when i = 4). The function g; maps the opening angle f8; | in one
cut to its counterpart f3; in the adjacent cut. The form of g; depends on
the cut side lengths a;, b;, ¢;, d; and is given explicitly by [11]

" ( @+ —d b3+eg_cg) W
i(X) = COs | arccos arccos
& 2611‘6’,' 2]7,'8,‘

with

e = a% + di2 + 2a;d;x ©)

The loop formed by the four cuts naturally leads to the composition
gegiogogiog (6)

which maps f5; to anew angle 3, such that cos §; = g(cos f3;). The
operator o refers to the function composition, e.g.,
(g1 ©g2)(x) = g1[g2(x)]. This process is shown in Fig. 3(a). For a
deployed configuration where the panels remain undeformed and
the connections intact, §; must be invariant under the map g. This
requirement defines the compatibility condition

g(cos fy) = cos f5, ©)

When all the cuts are parallelograms (i.e., @; = ¢; and b; = d,
i=1,2,3,4), g reduces to an identity function g(x) =x, so the
compatibility condition (7) holds for any f3; € [0, @], as indicated by
the straight line in Fig. 3(c). In this case, the 3-by-3 PQK is rigidly
deployable.

As long as all the cuts are parallelograms, general M-by-N PQK is
also rigidly deployable, because the compatibility condition can be
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Fig. 3 Compatibility-induced rigidly deployable kirigami versus incompatibility-induced nonrigidly deployable
kirigami. (a) and (b) Deployment of 3-by-3 planar quadrilateral kirigami pattern. Notice that, in (a), all the four voids are
parallelograms while, in (b), only three voids are parallelograms (the void at the bottom-right is not a parallelogram).
(c) The curves of cos fi; versus cos f, for the planar kirigami patterns. (d) and (e) Deployment of 3-by-3 spherical
quadrilateral kirigami [13]. All the four cuts in (d) are spherical parallelograms, while those in (e) are not spherical
parallelograms. (f) The curves of cos f, versus cos f, for the spherical kirigamiin (d) and (e) [13]. In (&), (b), and (d), (e),
the opening angles «;, ;, y;, 6; (i=1,2,3,4) and $, can be determined by the geometry of these patterns (i.e., the side
lengths a;, b;, ¢;, and d;, for i=1,2, 3,4) and one opening angle, say, ;. The arrows show the dependence of these
angles from f; to f,. (9) A genus-1 planar kirigami prototype that can morph between a compact state with a circular
hole inside a square (left) and a deployed state with a square hole inside a circle (right). The prototype was 3D-printed
using thermoplastic polyurethane (TPU). The frames were 3D-printed using polylactic acid (PLA). (h) A spherical
kirigami prototype that can morph between two stable states—a compact spherical square and a deployed dome
[13]. The prototype was assembled by joining 3D-printed resin panels at their pin joints. In (g) and (h), auxiliary gray
lines highlight the cut distributions on the compact configurations. Panels (d), (e), (h) are adapted with permission
from Ref. [13], Copyright 2022 by American Physical Society.

verified for any loop of cuts. A rigidly deployable PQK pattern can
be generated by solving a system of linear equations based on given
coordinates of a subset of nodes and given cut aspect ratios. This
procedure can be implemented either through a global construction
[11] or an additive construction [12]. In both cases, the linear nature
of rigidly deployable PQK streamlines the inverse design process.
Figure 1(c), left, illustrates a shape-morphing kirigami pattern
obtained by the global approach [11]. The kirigami pattern is formed
by parallelogram cuts, which determines the rigid deployment from
a square to a circle. Moreover, the aforementioned PQK can be
further generalized to genus-n PQK—characterized by 7 holes in its
global geometry—whose rigid deployability is guaranteed by the

Applied Mechanics Reviews

existence of a deployed state with parallelogram cuts. Under this
terminology, the original PQK is genus-0. It is important to note that
the existence of a deployed state essentially imposes an additional
constraint to a genus-n PQK pattern. In other words, while genus-0
PQK necessarily possesses a (rigidly) deployed state if all cuts are
parallelograms, genus-n (n > 1) PQK with parallelogram cuts may
not have a (rigidly) deployed state [11].

The generalization to genus-n paves the way for more
sophisticated inverse designs, such as tailoring both the exterior
and interior boundary shapes. Figure 3(g) shows a genus-1 PQK
prototype. In the compact state, the exterior boundary forms a
square, while the interior boundary approximates a circle. By
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deploying the prototype, these shapes can be reversed: the exterior
boundary becomes circular, and the interior boundary becomes
square. The prototype was 3D printed using thermoplastic polyur-
ethane (TPU). Although the PQK is rigidly deployable in theory—
since its voids (i.e., small holes) are all parallelograms and a
deployed state exists—stresses accumulate at the living hinges
during deformation. As a result, the prototype is monostable. Stiff
frames (made of polylactic acid, PLA) are used to lock the
deformation.

Itis noteworthy that the shape-morphing kirigami shown either in
Figs. 2(b) or 3(g) is designed through numerical optimization.
Leveraging local deformation characteristics of the rotating units,
the inverse design may be alternatively achieved in a “numeric-free”
manner. This principle has been applied to triangular patterns, where
the design is implemented by directly transforming the nodal
coordinates of a standard kagome pattern, guided by the maximum
shear strain distribution associated with the target shape change [9].

2.3 Incompatibility and Nonrigid Deformation. We have
shown that the existence of a deployed state with parallelogram cuts
is sufficient for the rigid deployability of PQK. But is this condition
also necessary? The answer is yes. In fact, even if only one cut is not
a parallelogram, it can be proven that g’ > 0 under the constraint
ai+bi=ci+d;,i=1,2,3,4[11]. This implies that g is a strict
convex function. Consequently, the compatibility condition (7) can
be satisfied for at most two distinct values of f3;, and therefore the
PQK isnotrigidly deployable. As illustrated in Fig. 3(b), nonrigid 3-
by-3 PQK must break a hinge connection to preserve the sizes and
shapes of panels when f3; violates the compatibility condition (since
p1 # PB). This behavior is depicted by the higher curve in Fig. 3(¢).
If general M-by-N genus-n PQK has at least one nonparallelogram
cut, it is not rigidly deployable, since every 3-by-3 section
containing that cut loses rigid deployability. Our discussion
indicates that the rigid (or nonrigid) deformations of PQK are
fundamentally determined by the geometric compatibility (or
incompatibility) of its constituent cuts. This insight is captured in
the following theorem [11]:

THeEOREM 1 (genus-n deployability). Genus-n (n > 0) POK is
rigidly deployable if and only if there exists a deployed state with all
the cuts forming parallelogram voids.

THeOREM 1 indicates that it is possible to customize rigid or
nonrigid deformations of free-form quadrilateral kirigami on a
plane. This diversity of deformation features is essentially
facilitated by the planarity of the space where the PQK reside. In
contrast, if the space is intrinsically curved, i.e., of nonzero Gaussian
curvature, achieving rigid deployment may be impossible for a loop
of cuts. A study on this issue is conducted for spherical quadrilateral
kirigami (SQK), which retains the same nodal connections as PQK,
but all the straight cuts on a plane become geodesic lines (i.e., great-
circle arcs) on a sphere [ 13]. Figure 3(d) shows a 3-by-3 SQK pattern
that is an analogy to the rigidly deployable PQK with parallelogram
cuts. That is, opposite side lengths are equal for each cut, expressed
by a; = ¢; and b; = d; fori = 1,2, 3, 4. Here, the side lengths a;, b;,
¢i,and d; are geodesic lengths on the sphere. For conciseness, we call
the cuts with equal opposite side lengths spherical parallelogram
cuts. We suppose that the Gaussian curvature of the base sphere is K.
The compatibility condition still has the form (7), while the loop
function g becomes [13]

g = ®)

with

4 +h.
P.Q= gcosz {%} )

In this case, the compatibility condition (7) has two solutions
cos i = =1, indicating that the 3-by-3 SQK only has two
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compatible configurations. These two configurations are both
compact, with all the cuts closed, as captured by the lower curve
in Fig. 3(f). For M-by-N SQK with spherical parallelogram cuts, the
compatible configurations are also two compact configurations as
consistent with all its 3-by-3 parts. In other words, the SQK with
spherical parallelogram cuts is not rigidly deployable, which is
essentially different from the rigidly deployable PQK with
parallelogram cuts. This difference in deployability originates
from different Gaussian curvatures between the sphere and the
plane. With a simplified spring model, the nondimensionalized
deployment energy Eg of the 3-by-3 SQK with parallelogram cuts
can be expressed by [13]

2
K?sin*p, + OlL°K?] (10)

4

Es :é |:Z(aibi)

i=1

where L = max{ay, by, ..., a4, b4 }. Equation (10) clearly shows that
zero K leads to zero Eg, suggesting the rigid deployability for PQK.
By contrast, Es is positive for nonzero K at cosf}; € (—=1,1),
indicating the nonrigid deployability for SQK. When cos ff; = *1,
Es is zero even for nonzero K, corresponding to the two compact
compatible configurations. By perturbing the nodal positions of the
SQK patterns with spherical parallelogram cuts (e.g., the one in
Fig. 3(d)), the compatible configuration at cos ; = 1 can be moved
toinside (—1, 1), e.g., atcos §; = 0 as shown in Fig. 3(¢) and by the
higher curve in Fig. 3(f). After the perturbation, the cuts are not
necessarily spherical parallelograms, but the cut side lengths
a;, b;, c;, d; still satisty a; + b; = ¢; + d; fori = 1,2, 3, 4, guarantee-
ing that the cuts can close to geodesic lines at cos {; = —1. Under
this condition, it can be proven that g” > 0 for cos §; € [—1,1], so
that the loop function g (whose special form is g¢ when a; = ¢; and
b; = d;) is a strict convex function and the compatibility condition
(7) holds true only for at most two distinct values of f#; [13]. This
means 3-by-3 SQK, with either spherical parallelogram or non-
parallelogram cuts, is not rigidly deployable, and consequently,
general M-by-N SQK is not rigidly deployable because it contains 3-
by-3 components. This conclusion is described by the following
theorem [13]:

THEOREM 2 (Spherical compatibility). SOK has either one or two
compatible configurations.

Figures 3(d)-3(f) illustrate the SQK patterns with two compatible
configurations. Certain SQK patterns may also have only one
compatible configuration, i.e., the undeployed configuration. We
refer to the supplementary material of Ref. [13] for such cases.
Theorems 1 and 2 reveal that the Gaussian curvature plays a critical
role for the deployment of kirigami structures. While on a plane, one
can design a rigidly deployable kirigami pattern whose boundary
morphs from a square to a circle (Fig. 1(c), left), such morphing
pattern is bistable on the curved sphere (Fig. 1(c), right). Figure 3(/)
shows a prototype that can be deployed from a compact spherical
square to a compatible dome with its boundary forming a small
circle. The square and the dome have the same radius of curvature.
The resin panels were 3D printed separately and then assembled at
the pin joints. The pin joints can rotate freely so the prototype is
bistable as predicted by the compatibility theorem.

Kirigami deployment on a general curved surface is an intriguing
topic that deserves further studies. However, rigid kirigami panels
with fixed curvatures cannot be freely deployed/moved within a
surface with varying curvatures. Instead, the kirigami panels need to
be flexible/soft in order to deform and to fit a curved surface with an
inhomogeneous curvature distribution [14]. The compatibility on a
generally curved surface may be defined by an optimization
framework and may be material-dependent.

2.4 Symmetry Considerations. Many classical kirigami pat-
terns are periodic tessellations such as the kagome kirigami
(Fig. 4(a)) and the rotating-square kirigami (Fig. 4(b)). These
tessellations can be characterized by the wallpaper groups (or
termed plane crystallographic groups), which contain two
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Fig.4 Plane symmetry group and quasi-crystal kirigami. (a) and (b) Wallpaper group kirigami [16]. (a) The kagome
kirigami pattern has p6m symmetry (a six-fold rotation center plus reflection axes) at the compact (left) and fully
deployed (right) states while the partially deployed configuration (middle) has p37m symmetry (an off-mirror three-
fold rotation center plus reflection axes). (b) The rotating-square kirigami pattern has p4m symmetry (a four-fold
rotation center plus reflection axes at 45deg) at the compact (left) and fully deployed (right) states while the
partially deployed configuration (middle) has p4g symmetry (a four-fold rotation center plus reflection axes at
90 deg). In (a) and (b), key rotation centers (dots) and reflection axes (dashed lines) that can be used for determining
their wallpaper group types are highlighted. (c)—(e) Quasi-crystal kirigami [17]. (¢) A fivefold Penrose kirigami
pattern. (d) An eightfold Ammann-Beenker kirigami pattern. (e) A twelvefold Stampfli kirigami pattern. In (c)—(e),
the compact states, intermediate deployed states, and the fully deployed states are shown. Panels (a) and (b) are
reproduced with permission from Ref. [16], Copyright 2021, the Author(s). Panels (c)—(e) are reproduced from Ref.

[17], Copyright 2022 by CC BY 4.0 license.

independent translators [15]. There are in total seventeen wallpaper
groups representing all the planar translational symmetries distin-
guished by rotation, reflection, and glide reflection (see Table 1).
The kagome pattern is p6m, featuring sixfold rotations and
reflections in six distinct directions. The rotating-square pattern is
p4m, featuring fourfold rotations and reflections in four distinct
directions. Both the kagome pattern and the rotating-square pattern
are rigidly deployable. Wallpaper groups can also describe some
bistable patterns. For example, the motif-inspired patterns with
square cores (Fig. 2(c), top left) are p4g, featuring fourfold rotations
and reflections in only two directions; the motif-inspired patterns
with triangular cores (Fig. 2(d), top left) are p3/m, featuring
threefold rotations and rotation centers off mirrors. The bistable
patterns are not rigidly deployable, but still deployable, i.e.,
compatible between a compact configuration and a frustration-free
expanded configuration. In fact, for any of the seventeen wallpaper
groups, one can construct deployable kirigami with the correspond-
ing symmetry. The symmetry can be specified for either the compact
or the deployed pattern. This insight is established in the following
two theorems [16]:

THeOREM 3 (wallpaper group deployability: compact pattern). For
any group G among the 17 wallpaper groups, there exists a
deployable kirigami pattern in G.

THEOREM 4 (wallpaper group deployability: deployed pattern).
For any group G among the 17 wallpaper groups, there exists a
deployable kirigami pattern with its final deployed shape in G.

These two theorems are proven by explicitly presenting the
kirigami patterns for all seventeen wallpaper groups [16]. Moreover,
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one can build connections between compact and deployed
symmetric patterns with arbitrary size change or symmetry change.
This conclusion is established in the following two theorems [16]:

THEOREM 5 (Wallpaper group deployability: Size change). For
any deployable wallpaper group pattern with n-fold rotational
symmetry, we can design an associated pattern with n-fold
rotational symmetry and arbitrary size change.

THEOREM 6 (Wallpaper group deployability: Symmetry change).
Gain, loss and preservation of symmetry are all possible throughout
the deployment of a kirigami pattern.

The arbitrary size changes can be achieved through symmetry-
preserving expansion to cuts or panels. The arbitrary symmetry
changes are justified with specific kirigami patterns, for example, the
temporal rotational symmetry loss (p6m to p31mto p6m) in Fig. 4(a)
and the reflectional symmetry preservation (p4m to p4g to p4m) in
Fig. 4(b).

The wallpaper groups can describe rotational symmetries of order
1,2, 3, 4, or 6. Quasi-crystal kirigami expands the design space of
deployable kirigami beyond the wallpaper groups to quasi-crystal
tilings, which lack translational symmetry but can exhibit high-order
rotational symmetries such as fivefold (Penrose tiling), eightfold
(Ammann—Beenker tiling), and twelvefold (Stampfli tiling) [17].
Starting from given compact quasi-crystal tilings, rigidly deploy-
able kirigami patterns can be obtained by adding tiles (the expansion
tile method), removing tiles (the tile removal method), or changing
the connectivity of the tiles (the Hamiltonian cycle method). The
expansion tile method achieves significant size change upon
deployment of the kirigami (Figs. 4(c)—4(e)). The tile removal
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Table 1 Characterization of the 17 wallpaper groups and the kirigami patterns [15,16]

rotational . .
has reflectional symmetry no reflectional symmetry
symmetry
p6ém p6
6-fold @
p4m mirrors at 45° p4g mirrors at 90° p4
4-fold %
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some rotation centers off mirrors all rotation centers on mirrors
3-fold
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orthogonal mirrors &
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2-fold ’___
i

Eese
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(none)

pg| has glides p1| noglide
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Images are adapted or reproduced with permission from Ref. [16], Copyright 2021 by the Author(s).

method reduces the overall size change accompanied by the
variation of void shapes. The Hamiltonian cycle method can realize
extremely large size change throughout the kirigami deployment.

3 On Three-Dimensional Deformations

From a physical perspective, two key factors govern the
deformation of kirigami surfaces with living hinges. The first factor
is the distribution of cuts. By assuming in-plane (or generally, in-
surface) rotations, one can analyze the 2D deformation character-
istics based solely on the cut distribution. Such analysis is reviewed
in Sec. 2 to characterize stability (Fig. 2), rigid or nonrigid
deformation (Fig. 3), and deformation symmetry (Fig. 4). While the
in-plane stiffness of the living hinges may affect the deformation
energy landscapes (e.g., transferring a theoretically bistable pattern
into monostable as shown in Figs. 2(e) and 2(f)), it has little effect on
the deformed shape as predicted in theory, as long as the deformation
is within the 2D surface (e.g., Fig. 3(g)). By contrast, a more intrinsic
geometric parameter—which is the second factor governing the
deformation of kirigami surfaces with living hinges—is the ratio of
the sheet thickness to the ligament width. This factor controls the
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emergence of out-of-plane deformation of a flat sheet. In addition, the
kirigami hinges can be intentionally endowed with rotational axes
biased from the normal of the kirigami surface. This implementation
facilitates 3D shape morphing under controllable deformations.

3.1 Buckling of Thin Kirigami Sheets. Figure 5(«) illustrates
arotating-square plastic sheet that is stretched in the direction along
the square diagonals. The geometry of the sheet is described by its
thickness ¢, ligament width J, and square length ¢. The in-plane
bending of the ligaments occurs at the initial deformation stage, with
the stiffness of the sheet expressed by [18]

N\ 2
5%5@ an

in which £ is Young’s modulus of the material. Once the in-plane
strain increases to a critical value ¢., the ligaments may buckle out-
of-plane, causing 3D deformation of the sheet. Assuming that the
initial buckling occurs in the small deformation regime, the critical
strain &. can be derived as [18]
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Fig. 5 Out-of-plane buckling in kirigami. (a) A thin kirigami sheet with square cuts (scaled sheet thickness t/ ~
0.085 and scaled hinge width 5/¢=0.06) that buckles under uniaxial tension 45 deg |nc||ned to the cuts (top) and the
critical strain ¢, that triggers the buckling of such kirigami sheets as a function of (t/&) (bottom) [18]. The dots are
from experimental data and the dashed line is from theoretical prediction. (b) Parallel cutting sheets [22]. Geometry
of the sheets is determined by the cut length £, the transverse spacing ¢4, and the longitudinal spacing £, (top left).
The phase diagram shows buckling configurations of these sheets under uniaxial tension with respect to the
geometric parameters ¢;/¢, and £;/¢y (bottom left). Representative buckled prototypes are provided (right).
(c¢) Nanomembranes (bilayer of silicon nanomembrane and thin polymer film) with cross-cuts (top left) and chiral
curve-cuts (bottom left) can transform into 3D buckled configurations (finite element simulations, middle; scanning
electron microscopy (SEM) images, right) under compressive loading (arrows at the anchors) [23]. (d) Gold nanofilms
with flower-like cuts (top left) and concentric cuts (bottom left) can transform to 3D buckled configurations (right)
under global ion beam irradiation (SEM images) [28]. Panel (a) is adapted with permission from Ref. [18], Copyright
2017 by American Physical Society. Panel (b) is adapted with permission from Ref. [22], Copyright 2018 by American
Physical Society. Panel (c) is adapted with permission from Ref. [23], Copyright 2015 by the PNAS license. Panel (d) is
adapted from Ref. [28], Copyright 2018 by the CC BY-NC 4.0 license.

2
8, = % (é) (12)

Equation (12) shows that the critical strain ¢. depends only on the
ratio of sheet thickness to ligament width, 7/4. If the sheet is thin
enough compared to the ligament width, the buckling happens
easily. For example, when 7/ =~ 0.085 (corresponding to the
prototype in Fig. 5(a), top), one can calculate ¢. ~ 0.0036.
Conversely, a thicker sheet makes it harder for buckling to occur.
Another type of kirigami that exhibits out-of-plane buckling has
linear parallel cutting patterns, also known as ribbon kirigami,
facilitating extremely high stretchability [19-21]. The buckled
profile of ribbon kirigami is largely affected by cutting distance [22].
As illustrated in Fig. 5(b), the two parameters £, /¢ and £. /¢, dictate
the 3D buckling configurations of the thin polyethylene tereph-
thalate (PET) sheets. Here, /. is the cut length; ¢, and /, are the
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spacing between two adjacent cuts in the transverse and longitudinal
directions, respectively. First, if the transverse spacing is large (i.e.,
0./C, = 1), the cuts do not overlap in the longitudinal direction,
causing weak interactions and small out-of-plane deformation.
Second, if there is overlap between the cuts (i.e., £./f; > 1), large
out-of-plane deformations occur, leading to symmetric or antisym-
metric buckling configurations. Roughly speaking, when the
longitudinal spacing is small (i.e., large £./¢y), the buckled sheet
is antisymmetric and the configuration is monostable. In contrast,
when the longitudinal spacing is large (i.e., small . /£,), the buckled
sheet can be symmetric. In this case, each repeating unit is bistable
and switchable between the symmetric state and the antisymmetric
state under external indentation. The coexistence of symmetric and
antisymmetric states can spontaneously appear when the cutting
geometry transits from the symmetric side to the antisymmetric side.
We refer to Ref. [22] for more rigorous geometric mechanics of the
symmetric/antisymmetric state selection, in which the competition
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between the bending energy of the plates U, and the elastic energy of
hinges U, in the symmetric configuration is analyzed. The
competition is dominated by the geometry of the cuts, expressed
as follows [22]:

Us ~ éé (13)
U, L,

in which L, = /(£ — £,)*/4 + €2 is the effective longitudinal
spacing between the cuts. In Fig. 5(b), the symmetric patterns exist
approximately in the regime that ¢, /¢, > 1 and 0.75 < ¢, /L, < 1,
suggesting large U, over small Uj,. In contrast, if U}, is large for the
symmetric configuration, the buckled sheet tends to have antisym-
metric configuration, in which the elastic hinge has almost no
deformation, i.e., Uy is almost zero.

The buckling of thin kirigami sheets can be triggered by
compression loading as well. This effect is used in a mechanically
driven approach to assemble complex 3D structures from 2D
membranes, in scales from macro to micro-and nano-and in
materials ranging from monocrystalline silicon to plastic and metal
[23]. With the cutting patterns on the membranes, in-plane
compressive forces (introduced via prestrained elastomer sub-
strates) can induce out-of-plane buckling, transforming flat
precursors into deterministic 3D configurations. The cuts can be
designed to define the buckled geometries. For example, as
illustrated in Fig. 5(c), the cross-cut pattern (top) generates a
pyramidal structure with mirror symmetry while the chiral curve-cut
pattern (bottom) assembles a circular configuration with rotational
symmetry. Moreover, this mechanical-driven assembling strategy
can be applied to hybrid membrane-ribbon systems [23], multi-
layered ribbons [24], and hybrid origami-kirigami membranes [25].
All these assemblages demonstrate out-of-plane popping with
compressive forces applied to the discrete anchors. Similar popping
effects arise when chiral kirigami membranes with continuously
closed boundaries are subjected to controlled stretching and release
[26] or when engineering steel sheets with chiral cuts are directly
lifted out-of-plane [27].

In addition to stretching or compression, kirigami buckling can be
induced by noncontact loading. For example, the perforated gold
nanofilm buckles under global ion beam irradiation [28], as
illustrated in Fig. 5(d). The buckling profile is governed by the
geometry of the slits. The cantilevers bend upward in the flower-like
pattern (Fig. 5(d), top) while the thin strips bend downward in the
concentric pattern (Fig. 5(d), bottom).

3.2 Eliminating Out-of-Plane Deformations With Folds and
Cuts. As reviewed above, the out-of-plane buckling can be
leveraged to induce desired 3D deformations in thin kirigami
sheets. However, the out-of-plane motion is detrimental to the
kirigami mechanisms that perform their functionality only inside a
plane [4,12,29]. Fabricating kirigami mechanisms aimed at in-plane
deformations primarily involves 3D printing [29], cutting thick
plates [5], molding [12], or assembling building blocks [4]. The first
three approaches commonly use tough materials (e.g., TPU for 3D
printing, rubber for cutting, liquid rubber, or plastic for casting) to
create the ligaments that serve as compliant hinges. It is crucial to
balance the stiffness and strength of the compliant hinges: a large
ligament enhances strength and prevents failure, but it also increases
rotational stiffness, inducing considerable restoring forces that
impede the opening/closing of cuts. One promising way to softening
the hinges while not trading off their strength is to introduce fabric
hinges that weave through the rubber or plastic panels during the
molding process [12,30]. The assembling approach involves
fabricating each panel separately (e.g., through 3D printing or
folding paper) and connecting the panels with tape [4]. The fabrics or
tape, as living hinges, provide very low rotational stiffness,
beneficial for free in-plane rotation. However, they may suffer
from low out-of-plane stiffness. As a result, the kirigami
mechanisms with such hinges may be too flexible to maintain their
planar shape without external support.
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If out-of-plane buckling is undesired for thin kirigami sheets, the
most straightforward solution is to constrain the sheets in a plane.
However, this may cause large in-plane bending stress at the
ligaments. For example, the cutting end easily breaks when a
rotating-square paper unit is stretched (Fig. 6(a), inset). The stress
concentration can be eliminated by introducing additional folds into
the cuts. Figure 6(a) illustrates the kagome kirigami (left) and the
rotating-square kirigami (right) deployed with designed mini folds
[31]. Ateach cutting end, three folds are added to make a protruding
tetrahedron hinge, which offers one degree-of-freedom of rotation
for the in-plane deformation of the kirigami. This kinematics is
consistent with that of the ideal rotating-square kirigami in which
axial rotation at the cutting ends drives the opening and closing of
cuts. There is no tendency of buckling for the in-plane deformation
of the kirigami sheets with folding hinges, which are therefore
kirigami mechanisms. Moreover, the folding hinge can have one
more degree-of-freedom if out-of-plane deformation is allowed. The
multiple degrees-of-freedom can be harnessed to produce multi-
modal deformations of the kirigami sheets [31].

By combining cutting, folding, and pasting, one can introduce
intrinsic curvature to a flat surface and transform it into complex 3D
structures of finite thickness. This principle underlies the concept of
lattice kirigami, in which portions of material are removed or
inserted before resealing the cuts via basic operations such as
“climb” and “glide” [32-34]. Using lattice kirigami, one can create
triangular or square patterns on the top surface of a 3D structure, as
illustrated in Fig. 6(b). The triangles are on the top surfaces of the
octahedra, while the squares are on the top surfaces of the
cuboctahedra. These polyhedra interlock tightly, preventing any
relative rotation of the triangles or squares. Although the lattice
kirigami does not deform in plane, it indeed lifts the dimension of a
flat surface.

The paradox of finite thickness and in-plane deformation from
one piece of paper is addressed via a new approach called folded
kirigami, which introduces folds and cuts to a flat surface and
subsequently folds it into thick kirigami mechanisms [35]. Here, the
dimension lifting is realized by rejoining faces, instead of resealing
cuts. For a target kirigami pattern (e.g., the kagome pattern), an
extended high-genus pattern is designed with appropriate sets of
creases and cuts (Fig. 6(c), far left), and then folded to form the
kirigami mechanism with finite thickness (Fig. 6(c), middle left). As
a result, hinges perpendicular to the base triangles are created,
allowing free in-plane rotation between the triangular prisms of the
kagome folded kirigami. The fully deployed configuration with
hexagonal holes and the fully retracted void-free configuration of the
kagome folded kirigami are demonstrated in Fig. 6(c), middle left.
This paradigm can also be used to make thick rotating-square
mechanisms, as illustrated in Fig. 6(c), right. Moreover, the folded
kirigami can be guided by explicit formulations that generate
diverse irregular crease-cut patterns, including two representative
mechanical metamaterial patterns of geometric and mechanical
complexity: the transformable polarized kagome metamaterial and
the nonreciprocal square-rhombus metamaterial, which will be
discussed later. Importantly, the folded kirigami properly balance its
in-plane stiffness and out-of-plane stiffness and strength—the
folding hinges have quite low rotational stiffness so that the folded
kirigami can be deployed and retracted easily as 2D mechanisms,
and meanwhile, the cellular structures of the folded kirigami can
sufficiently resist out-of-plane loading before large bending
deformation or failure occurs. Such a combination of high morphing
efficiency and high flexural stiffness is particularly useful in robotic
materials [36,37].

3.3 Three-Dimensional Shape Morphing. Beyond shape
morphing within a 2D surface (e.g., Fig. 2(b) and Figs. 3(g) and
3(h)), kirigami provides promising strategies for transforming
surfaces in the 3D space. Such transformations can be categorized as
follows: from one open surface to another open surface (Figs. 7(a)
and 7(b)), from an open surface to a closed surface (Figs. 7(c) and
7(d)), and from one closed surface to another closed surface
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Fig.6 Dimension lifting of kirigami with folds and cuts. (a) The kagome (left) and rotating square (right) kirigami with
tetrahedral folding hinges [31]. The folding hinges allow free deployment and eliminate the out-of-plane buckling of
the thin sheets. (b) The octahedral (left) and cuboctahedral (right) lattice kirigami can be constructed from one piece of
paper with folds and holes [33]. The thick structures are interlocked tightly, prohibiting in-plane deformations. (¢) The
kagome (left) and rotating-square (right), made with the so-called “folded kirigami” approach, can be manufactured
from a single piece of paper with both folds and cuts [35]. The thick mechanisms have perpendicular folding hinges,
allowing nearly free in-plane deformations. Panel (a) is adapted with permission from Ref. [31], Copyright 2019 by the
PNAS license. Panel (b) is adapted with permission from Ref. [33], Copyright 2016 by CC BY-NC 4.0 license. Panel (c) is
adapted with permission from Ref. [35], Copyright 2024 by the Author(s).

(Figs. 7(e) and 7(f)). For all the examples illustrated in Fig. 7, the
shape-morphing is geometry-dominated because the panel defor-
mations are quite small compared to their rigid motions (i.e.,
rotations and translations) on the morphing path. The quadrilateral
kirigami pattern in Fig. 7(a) is designed by matching the size and
shape of the corresponding panels in the compact flat state and the
deployed curved state, which are therefore geometrically compat-
ible [5]. The pattern is bistable in theory but the prototype is
monostable due to the significant rotational stiffness of the living
hinges. The compatibility between the compact and the deployed
kirigami surfaces can also be obtained in an indirect manner. For
example, the conformal mapping from a target curved domain (Fig.
7(b), right) to a flat domain (Fig. 7(b), left) defines a locally isotropic
scale factor that varies from one unit cell to another. By matching the
scale factor and the expansion stiffness at each unit cell, one can
transform the flat domain into the target curved domain [38]. This
principle is implemented with the motif-inspired kirigami unit cell
with a triangular core (Fig. 2(d), top left, and Fig. 7(b)). The unit cell
provides isotropic auxetic expansion with tunable stiffness con-
trolled by the size and orientation of the triangular core. The
resulting kirigami pattern has an inhomogeneous cut distribution
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(Fig. 7(b), left) and the prototype is stable at either the flat (Fig. 7(b),
left) or the curved (Fig. 7(b), right) state.

Transformation from an open surface to a closed surface involves
aligning properly designed open boundaries to “close” the shape.
The aligning process can be realized from either a wrapping strategy
[39—41] or a deploying strategy [42]. The wrapping strategy, for
example, cuts a flat surface into multiple strips (Fig. 7(c), left) and
seamlessly attaches them onto a base sphere (Fig. 7(c), right) [40].
The deploying strategy can be implemented by optimizing a free-form
quadrilateral pattern (Fig. 7(d), left) to make it compatible with a
deployed configuration fitting a target closed surface (Fig. 7(d), left)
[42]. The quadrilateral pattern has considerable degrees-of-freedom
upon 3D deployment, which enables it to deploy to a target shape of
high complexity in geometry and even in topology.

A closed surface can be formed by sewing together the free
boundaries of one or more open surfaces. In this context, morphing
on a closed surface requires the synchronous evolution of its
constituent units to maintain proper adjacency across the stitched
boundaries, which imposes stricter constraints than morphing open
surfaces individually. While the pure kirigami approach is
efficacious in closing an open surface (Fig. 7(d)), the combination
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Fig.7 Three-dimensional shape morphing of kirigami structures. (a) Monostable rubber sheet with a quadrilateral
cutting pattern that expands to a hyperbolic paraboloid [5]. (b) Bistable rubber sheet with a motif-inspired cutting
pattern that expands to an irregular surface with mixed curvature [38]. (¢) Developable paper net that wraps a sphere
[40]. (d) Quadrilateral kirigami pattern that deploys to a double torus [42]. (e) Bistable assemblage (top) and
prototype (bottom) that deploys from a cube to a sphere [43]. The prototype was made by joining 3D-printed
polylactic acid (PLA) panels with thin metal rods (inset). (f) Bistable assemblage (top) and prototype (bottom) that
deploys from a sphere to a torus [43]. The prototype was made by joining 3D-printed PLA panels with thick screws
and nuts (inset). In (e) and (f), the energy plots are from simulations with bar-and-hinge model. Panel (a) is adapted
with permission from Ref. [5], Copyright 2019 by Springer Nature. Panel (b) is adapted with permission from Ref. [38],
Copyright 2021 the Author(s). Panel (¢) is adapted from Ref. [40], Copyright 2020 by CC BY-NC 4.0 license. Panel (d) is
adapted with permission from Ref. [42], Copyright 2022 by Elsevier. Panels (e) and (f) are adapted with permission

from Ref. [43], Copyright 2023 by CC BY-NC 4.0 license.

of cuts and folds enables controllable morphing between different
closed surfaces with preserved topology (Fig. 7(e)) or changed
topology (Fig. 7(f)) [43]. This combination facilitates precise
morphing control by balancing flexibility and controllability—
diagonal folds in quadrilateral panels allow finer curvature
approximation with fewer panels, while revolute joints at cut
intersections guide the bistable morphing process.

4 Mechanical Metamaterial Properties

Recently, the intersection of advanced physical systems and
metamaterial design has led to the discovery of new classes of
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mechanical metamaterials, for example, from topological insulators
[44,45] to topological mechanical metamaterials [46—49], and from
nonreciprocal optical or photonic devices [50,51] to nonreciprocal
mechanical metamaterials [52-57]. Topological mechanical
responses are attributable to the topology of phonon band structures
of the metamaterials. Nonreciprocity breaks the transmission
symmetry of a force between two points of the metamaterials.
Interestingly, the topological and the nonreciprocal mechanical
metamaterials have found their forms in locally isostatic lattices
[58], as known as Maxwell lattices [59]: the kagome lattice for
transformable topological mechanics [48] and the square-rhombus
lattice for nonreciprocity [52]. In terms of geometric layouts, these
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Fig.8 Irregular kagome lattice and topological polarization transformation. (a) Soft and hard edge stiffness versus

the twist angle 0 of the irregular kagome lattice [48]. Five representative configurations (corresponding to 6, to 05) are
shown. The twist angles 0., 03, and 0, define the critical configurations with collinear edges (highlighted by parallel
strips). Across the critical configurations, the polarization vector Rt changes discontinuously. In the polarized
regime (highlighted by shading), Rt points from the (bottom horizontal) hard edge to the (top horizontal) soft edge of
the irregular kagome configurations above the graph. In the nonpolarized regime, Rr=0. (b) The irregular kagome
prototype is assembled from plastic “K’NEX” parts [48]. (c) Snapshots of the indentation tests (top) and simulations
(bottom) of the irregular kagome prototype made of shape memory polymers [64]. (d) Snapshots of the indentation
tests of the irregular “folded kirigami” kagome lattice (left) and the experimental loading curves (right) [35]. In either
(c) or (d), the indentation tests at the soft edge and the hard edge for one nonpolarized configuration (1) and one
polarized configuration (0;) are illustrated. Panels (a) and (b) are adapted from Ref. [48], Copyright 2017 by CC BY 4.0
license. Panel (¢) is adapted from Ref. [64], Copyright 2023 by CC BY 4.0 license. Panel (d) is adapted with permission

from Ref. [35], Copyright 2024 by Author(s).

2D hinged lattices can be seen as part of an emerging category of
metamaterials—kirigami metamaterials, for which large deforma-
tions of 2D surfaces are programmed by the cuts [60].

4.1 Irregular Kagome Pattern and Topological Polarization
Transformation. By breaking the symmetry of a regular kagome
pattern (i.e., distorting equilateral triangles into scalene ones), the
structure acquires the capacity to be ropologically polarized, i.e., to
push floppy modes from one edge to the other, causing no floppy
mode at one edge and extra floppy modes at the opposite edge [48].
This polarization stems from phonon band topology of the pattern
and therefore is robust against local geometric perturbations. In an
irregular arrangement consisting of equilateral and scalene
triangles, reconfiguring the pattern can toggle the appearance and
disappearance of polarization, yielding transformable topological
mechanical metamaterials [48]. Such topological polarization
transformation can also be realized by combining two different
scalene triangles [61]. In what follows, we describe the
equilateral-scalene pattern in detail. As illustrated in Fig. 8(a),
sweeping the twist angle 0 applies uniform soft deformation to the
irregular kagome pattern (or lattice in terms of physics) in its Guest-
Hutchinson mode [62]. This uniform twisting transforms the pattern
between polarized states (0, < 0 < 0;) and nonpolarized states
(6 < 0, or 0 > 04). The topological polarization Rt is a Bravais

Applied Mechanics Reviews

lattice vector that points toward the edge with extra floppy modes,
expressed by [58,59]

R = na; (14)
=

in which a; are primitive vectors (Fig. 8(a), inset). The coefficients n;
are integer topological invariants of the equilibrium matrix Q (k) for
wavenumbers K in the Brillouin zone, where the primitive reciprocal
vectors b; satisfy a;-b; = 2nd;. Specifically, n; are winding
numbers of the phase of det[Q(k)| around the cycles C; connecting
k and k + b;. They are expressed by [58,59]

1

m=%£%V@® (15)

in which ¢(k) is the phase of det[Q(k)]. The winding numbers
change only when 6 crosses the topological transitions 0, 65, and
04, resulting in distinct polarizations [48]

a —ap, 92<9<03
Rr = ¢ ay, 03 <0< 04 (16)
0, 0<0, or 0>04
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The polarization vector Ry cannot be well-defined at a transition,
where bulk floppy modes (zero modes) arise. The zero modes are
directly related to the lattice geometry that features collinear bonds
(triangle edges). The collinear bonds generally allow states of self-
stress, and furthermore, induce zero modes via the general Maxwell
relation [58]

Ny — Ny = dN; — N, a7

which indicates that the number of zero modes N, and the number of
states of self-stress Ny vary synchronously if the number of sites Vg,
the number of bonds N, and the dimension of the lattice d do not
change. In nonpolarized states, floppy edge modes reside on both
edges of the lattice. As 0 sweeps from the nonpolarized regime to the
polarized regime, the edge modes leave the bottom edge into the
bulk, substantially increasing the bottom edge stiffness (i.e., the
curve of hard edge in Fig. 8(a)), and become bulk floppy modes at
the transitions. In polarized states, the edge modes gather at the edge
pointed by Rt. Notably, at the transition 03, despite the appearance
of a horizontal line of straight bonds supporting states of self-stress
and a singular R, the lattice still supports polarization in the vertical
direction. This configuration is actually extensively used to produce
topological polarization, such as in Refs. [35] and [63-65].

For physical realization of the topological polarization transfor-
mation, one has to consider the theoretical assumption that the
triangles are connected by free hinges which facilitate the floppy
edge modes as well as the uniform twisting in the Guest-Hutchinson
mode. The original construction is the assembly of plastic modular
buildings as illustrated in Fig. 8(b). The blue-hinge parts are inserted
through the black-hinge parts, allowing free rotations between them.
This assembly shows substantial change in the edge stiffness with
the uniform twisting [48].

The topological polarization is also pursued with a single piece of
material under the context of mechanical metamaterials, where
living hinges take the place of ideal hinges [35,63—65]. The living
hinges must have sufficiently low rotational stiffness to induce the
polarization in the small deformation regime. Furthermore, the
polarization transformation requires even much lower rotational
stiffness—the hinges should maintain a low stress level after the
uniform twisting, which involves large bending deformations of the
hinges. To facilitate the polarization transformation, shape memory
polymer is used to fabricate mechanical metamaterials of which the
hinge stresses can be temporally erased (i.e., stress caching) under
temperature control [64]. Such metamaterials can be stress-free in
both the polarized and the nonpolarized configurations, avoiding
stress accumulation in the hinges. As illustrated in Fig. 8(c), the
shape memory polymer metamaterial exhibits significant edge
stiffness change from its nonpolarized (i and ii) to its polarized
configurations (iii and iv), with an agreement between simulation
and experiment. Specifically, the hinge ligaments are 100 um wide
(versus maximum side length of 2.25 mm for the triangles) as an
optimal compromise between their compliance and strength. Under
this hinge size, the metamaterial exhibits a stiffness ratio of 2.18
between the hard and soft edges in the polarized state (03) and of 1.15
in the nonpolarized state (6;), showcasing the polarization
transformation.

Stronger polarization and transformation capability can be
realized with one piece of paper by harnessing the extreme
reconfigurability of the folded kirigami [35]. The folding hinges
are almost ideal so that the reconfiguration of the folded kirigami is
nearly stress-free. As illustrated in Fig. 8(d), the irregular kagome
folded kirigami (paper thickness of 0.2mm versus maximum
triangle side length of 20 mm) exhibits a stiffness ratio of up to 5 in
the polarized state (03) and around 1.2 in the nonpolarized state (0,).

4.2 Square-Rhombus Pattern and Nonreciprocity. The
Maxwell-Betti theorem indicates the static reciprocity of a linear
elastic material undergoing infinitesimal strain—the displacement
at a point (indexed by 2) induced by a force applied at another point
(indexed by 1) equals the displacement at the point 1 induced by the
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same force applied at the point 2 [66—68]. As illustrated in Fig. 9(a),
an elementary example of reciprocal systems is a horizontal beam
subjected to two vertical forces P; and P, at point 1 and point 2,
respectively. We suppose Aj; is the displacement at point i induced
by the force P;, where 7,j = 1,2. Consider two states I and II of the
beam. For state I, P; is applied first followed by P,. In this case, the
total external work is expressed by

1 1
Wi :§P1A11 +§P2A22 +PiAp (18)

For state I1, P, is applied first followed by P;. The total external work
becomes

1 1
Wi = EpzAzz +§P1A11 + P2y (19)

Under linear elasticity, the total external work is not affected by the
order in which the forces are applied, i.e.,

Wi =Wy (20)
Substituting Egs. (18) and (19) into Eq. (20) yields
PiAn = PrAy 21
Supposing Py = P, = P, we have
A = Ay (22)

Either Eqgs. (21) or (22) expresses the concept of static reciprocity.
While breaking time-reversal symmetry or time-invariance of a
media can generate nonreciprocity in linear elastic materials, spatial
asymmetry, and nonlinearity are two necessary ingredients for static
mechanical nonreciprocity [54]. Kirigami can provide both
ingredients. Figure 9(b) illustrates a square-rhombus kirigami
pattern, which is asymmetric regarding the left and right edges,
quantified by the asymmetry angle 0 = 7/16 [52]. Nonreciprocity
emerges when a horizontal input force F; (or F) is applied on the
middle point of the left (or right) edge. Under the same magnitude of
the input force (F; = F, = F), the output displacement u; (or u;7)
on the right (or left) edge is different from each other. This
discrepancy of “static transmissibility”” in the opposite directions
suggests the nonreciprocity of the kirigami system, expressed by

U 7’5 12531 (23)

As illustrated in Fig. 9(c), substantial nonreciprocity can be detected
from experiments and simulation, even for small input forces (i.e.,
|F| ~ 0.2N), indicating the strong nonlinearity of this system.
Remarkably, the experimental curves from prototypes of different
materials but the same size (squares of diagonal length 16 mm and
rhombi of diagonal lengths 16 mm and 8 mm)—the silicon rubber
(Fig. 9(d)) and the folded kirigami made of paper (Fig. 9(e))—
approximately agree with each other and also match the simulation
curve. This consistency highlights that the nonreciprocity of this
kirigami system is controlled by its geometry, instead of the
constituent materials. As motivated above, lack of reciprocity has
the potential to be used as a design criterion in (quasi-)static
mechanical systems and in other fields such as dynamics (non-
reciprocity breaks the invariance when source and receiver are
swapped), acoustics, and optics [69].

4.3 Rotating-Rectangle Pattern and Poisson’s Ratio.
Besides the emerging metamaterial functionalities such as the
transformable polarization and the static nonreciprocity, kirigami is
also employed to understand and design materials with negative
Poisson’s ratio [70]. Two typical examples include the kagome
pattern [71] and the rotating-square pattern [10], while more
complex hybrid patterns can also be created [72]. For these kirigami
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Fig. 9 Static nonreciprocity of the square-rhombus kirigami. (a) Concept of reciprocity is exemplified with a
horizontal beam under vertical loadings. The force P; is applied at the point j, causing the displacement A; at the
point i (i,j =1,2). In state |, P; is applied first, followed by P,, resulting in the total external work W,. In state ll, P, is
applied first, followed by P;, resulting in the total external work Wj,. If the deformations are small, we have the
reciprocal relationship P;A12 = P>A2¢, which becomes Ay, = A2y when Py = P, =P. (b) The square-rhombus kirigami
is nonreciprocal under the asymmetric angle 0 ==/16 [52]. The force F; is applied at the point j, causing the
displacement uj; atthe pointi(i, j = 1, 2). The response is substantially nonlinear even for relatively small (but not too
close to zero) input forces. Thus, we have the nonreciprocal relationship Fjui2 # FaUs1, which becomes uq2 # Usq
when F; =F,=F. (¢) The nonreciprocity descriptor uj2—u»; versus the input force F; = F, = F [35,52]. The
experimental curves are from the mechanical tests of (d) the silicon rubber prototype [52] and (e) the folded kirigami
prototype [35]. Panel (d) is adapted with permission from Ref. [52], Copyright 2017 by Springer Nature. Panel (e) is
adapted with permission from Ref. [35], Copyright 2024 by the Author(s).
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Fig. 10 Poisson’s ratio v versus the rotation angle 0 of rotating-rectangle kirigami [73]. The constituent rectangles
have side lengths a and b. Four rectangles form a unit cell circumscribed within a large rectangle of side lengths X;
and Xz. (a) Curves for patterns with a>b. Each vertical dashed line corresponds to a critical angle 6,, which satisfies
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(b) Curves for two equivalent patterns under different parameterizations (a> b and a’ < b’). The parameters satisfy the
following relationships: @ = b, b’ = a, and ' +0 = 180 deg.

patterns, the Poisson’s ratio is governed purely by the geometry of
their configurations. Here, we illustrate this phenomenon using the
rotating-rectangle pattern (Fig. 10(a)) [73], which generalizes the
classical rotating-square pattern. The rotating-rectangle patterns are
composed of rectangles of side lengths @ and b, and their

Applied Mechanics Reviews

deformations are parameterized by a rotation angle (. Extracting a
unit cell of four rectangles, one obtains a circumscribed rectangle of
side lengths X and X,. To calculate the Poisson’s ratio, one chooses
a suitable strain measure, among various strain definitions such as
the engineering strain, the infinitesimal strain, and the logarithmic

SEPTEMBER 2025, Vol. 77 / 050801-15

G202 1990100 €2 UO Jasn AjsIoAlun uojeoulid Aq Jpd-| y0L-GZ-IWE/0ZG86Y2/1080S0/S/L L/Pd-aloie/smalARISoluEYaWpaldde B0 swse  uolos||oofeNBipawsey/:diy Lol papeojumoq



strain. While all these strain forms have their advantages and
disadvantages in describing the deformations of a rotating-rectangle
pattern [74], the infinitesimal strain—expressed by dX;/X; and
dX, /X, for the two orthogonal directions 1 and 2, respectively—is
more intrinsic because it does not rely on selecting a specific
undeformed configuration. If the loading is applied in the direction
2, then the Poisson’s ratio is expressed by [73]

dX, /X, _a*sin*(0/2) — b*cos?(0/2)
CdXy/X,  d?cos?(0/2) — b2 sin2(0/2)

V=

(24)

For a = b, Eq. (24) indicates a constant Poisson’s ratio v = —1,
which is corresponding to the rotating-square pattern. Fora # b, vis
singular when the rotation angle 0 equals

0y = 2 arctan (g) (25)

As illustrated in Fig. 10(b), a rotating-rectangle pattern with a’ > b’
is equivalent to a rotating-rectangle pattern with a < b, under the
relationships @’ = b, b’ = a, and 0 + 0 = 180 deg. Therefore, only
one case, say a < b, needs to be analyzed. Figure 10(a) shows that
each curve of v versus 0 has two branches, separated by the vertical
asymptote line 0 = 0y and the horizontal line » = —1. Equation (25)
indicates 6y < 90° for @ < b. on the left-hand side of the asymptote
line (0 < 0y), the Poisson’s ratio satisfies v < —1. As illustrated by
the case of @ < b in Fig. 10(b), the singularity at the asymptote line
arises because when 0 = 0, the rectangle diagonals are collinear in
the direction 2, resulting in dX, = 0. In addition, when the rotation
angle 0 equals

oy = 180° — 0y = 2arctan (g) (26)
the rectangle diagonals are collinear in the direction 1 (the case of
a < b in Fig. 10(b)). Therefore, we have dX; = 0 and consequently
v =0 for = 6. on the right-hand side of this point (6 > 6,), the
Poisson’s ratio satisfies — 1 < v <0, while on the left
(O <0< 06), we have v > 0. Desired values of the Poisson’s ratio
can be obtained by selecting rotating-rectangle patterns with proper
side lengths @ and b and rotation angle 6.

By integrating rotating-square mechanisms with chiral origami
modules, 3D metamaterials can undergo large, multimodal
deformations that synchronize twisting and translation [75]. Since
standard rotating-square patterns have a constant Poisson’s ratio,
then generalized rotating-rectangle patterns may broaden the
deformation modes of these 3D metamaterials with the feature of
a tunable Poisson’s ratio.

5 Summary

This paper has focused on the underlying mechanism that
transforms geometric characteristics of kirigami surfaces to their
unique mechanical properties. The applications and challenges of
kirigami engineering have been summarized in two recent reviews
[76,77]." Their applications spread from flexible electronics to soft
robotics, and from medical devices to energy and environmental
devices. Their challenges include fabricating complex prototypes on
small and large scales, balancing functional flexibility and structural
integrity, and tailoring dynamics properties. We envision a couple of
important directions for kirigami engineering regarding the inter-
play of geometry and mechanics: first, the theory of pattern design
and deformation description of kirigami surfaces in general non-
Euclidean space with varying curvatures; second, the fabrication
strategy of kirigami surfaces with a proper material selection that

lAlthough the term kirigami engineering is not present in these two contributions,
they essentially discuss the same concept and put more emphasis on the application
front.
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minimizes the influence of local constituent material properties on
the global mechanical responses predicted by the geometric
analysis. Kirigami expands the design space and offers an effective
toolkit for engineering and scientific applications involving the
interplay of geometry and mechanics. It allows creative designs that
are not only aesthetically compelling but also mechanically
ingenious.
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