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A B S T R A C T

Additive manufacturing methods together with topology optimization have enabled the creation
of multiscale structures with controlled spatially-varying material microstructure. However,
topology optimization or inverse design of such structures in the presence of nonlinearities
remains a challenge due to the expense of computational homogenization methods and the
complexity of differentiably parameterizing the microstructural response. A solution to this chal-
lenge lies in machine learning techniques that offer efficient, differentiable mappings between
the material response and its microstructural descriptors. This work presents a framework for
designing multiscale heterogeneous structures with spatially varying microstructures by merging
a homogenization-based topology optimization strategy with a consistent machine learning
approach grounded in hyperelasticity theory. We leverage neural architectures that adhere to
critical physical principles such as polyconvexity, objectivity, material symmetry, and thermody-
namic consistency to supply the framework with a reliable constitutive model that is dependent
on material microstructural descriptors. Our findings highlight the potential of integrating
consistent machine learning models with density-based topology optimization for enhancing
design optimization of heterogeneous hyperelastic structures under finite deformations.

. Introduction

The growth of computational resources, together with advances in additive manufacturing (AM), have brought topology
ptimization (TO) to the forefront of engineering design. The foundational work by Bendsøe and Kikuchi (1988), which addressed the
ptimization of material distribution through a homogenized treatment of the microstructure, provided the basis for the approaches
e have today. Despite this, the subsequently developed methods, such as the solid isotropic material with penalization (SIMP)
ethod (Bendsøe, 1989; Zhou and Rozvany, 1991) and the level set method (Allaire et al., 2004) were favored over homogenization-

ased TO because of early challenges related to manufacturability, small lengthscale effects, and microstructural connectivity.
oday, with advances in additive manufacturing technology, it is now possible to 3D print various graded microstructures (see
.g. Schumacher et al., 2015), which has prompted a resurgence of homogenization-based methods (Pantz and Trabelsi, 2008; Groen
nd Sigmund, 2017; Groen et al., 2020) in multiscale TO. These developments not only enabled the ability to design structures of
nprecedented complexity at multiple scales but also their physical realization (Sanders et al., 2021).
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Nomenclature

Abbreviations

R2 Coefficient of determination
FE2 Finite element squared
3D Three-dimensional
AM Additive manufacturing
FEM Finite element method
FFN Feed-forward neural network
ICNN Input convex neural network
MAE Mean absolute error
ML Machine learning
NN Neural network
PICNN Partial input convex neural network
RMSE Root mean squared error
RVE Representative volume element
SIMP Solid Isotropic Material with Penalization
TO Topology optimization
List of Symbols
𝛼 Particle volume fraction
𝜌̄, 𝜌̄𝑒 Projected pseudo-density design variable and its element-wise value
𝑩 Left Cauchy–Green deformation tensor
𝑪 Right Cauchy–Green deformation
𝑬 Green–Lagrange strain
𝛽𝜓 Projection strength parameter for the strain energy density interpolation factor
𝛽𝜌 Projection strength parameter for the pseudo-density design variable
𝑭 Deformation gradient
𝑭 𝑒𝛾𝑒 Effective deformation gradient in element 𝑒
𝒉𝑒𝑖 Linear filter function in filtering operation
Λ, Λ̃ Principal stretch-based transformed input space for ICNN
𝑷 First Piola–Kirchhoff stress
𝝓𝛼 , 𝜙𝛼𝑖𝑗 Filter matrix for the particle volume fraction design variable
𝝓𝜌, 𝜙𝜌𝑒𝑖 Filter matrix for the pseudo-density design variable
𝑸 Orthogonal transformation tensor
𝑺 Second Piola–Kirchhoff stress
Θ,Θ𝑒 Set of design variables and element-wise set of design variables
𝝋,𝝋𝑒 Deformation field and its element-wise value
𝒙𝑒,𝒙𝑖 Centroid of element 𝑒 and 𝑖 respectively
, ̃ Convex function
𝜒𝑒 SIMP interpolation factor for element 𝑒
 ,0 Output of the ICNN and correction term
 Transformation layer in the ICNN-based model
𝜖 SIMP ersatz parameter
𝜂𝜓 Projection threshold parameter for the strain energy density interpolation factor
𝜂𝜌 Projection threshold parameter for the pseudo-density design variable
𝛾𝑒 Strain energy density interpolation factor for element 𝑒
𝛼̂ , ̂𝛼𝑒 Filtered particle volume fraction design variable and its element-wise value
𝜌̂, 𝜌̂𝑒 Filtered pseudo-density design variable and its element-wise value
𝜆1, 𝜆2, 𝜆3 Principal stretches of the deformation gradient
⟨𝑷 𝜇⟩ Volume averaged microscopic first Piola–Kirchhoff stress

The research in this field is far from complete, as the progression to multiscale TO within a geometrically and materially nonlinear
setting has significant challenges. Parallel developments have been made in multimaterial additive manufacturing (Gaynor et al.,
2014) which paved the way to the development of multimaterial TO (Sanders et al., 2018a,b) and the extension to hyperelastic
2 
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cof 𝑭 Cofactor of the deformation gradient
dm Microstructural descriptor
∇𝒖𝑒 Displacement gradient in element 𝑒
∇sy m Symmetric gradient operator
𝜓 , 𝜓̂ , 𝜓̃ Strain energy density
𝜓𝑒,𝛾𝑒 Interpolated strain energy density in element 𝑒
𝜓𝑒 Strain energy density in element 𝑒
𝜓𝐿 Small deformation linear elastic strain energy density
𝜌, 𝜌𝑒 Pseudo-density design variable and its element-wise value
𝑒 Element index
𝐽 Determinant of the deformation gradient
𝑝 SIMP penalization parameter
𝑟𝜌 Filter radius for the pseudo-density design variable

multimaterial TO undergoing large deformations (Zhang et al., 2020). However, the existing TO literature has not yet demonstrated
ultiscale design with nonlinear material behavior at reasonable computational expense. The primary limitation that has to be

ddressed during nonlinear multiscale TO is a computational bottleneck that arises while linking the finer scales to the global,
oarser scale. While homogenization techniques offer an excellent means to bridge scales in the forward problem when there exists

a clear separation of scales, the standard analytical strategies fall short in the presence of material and geometrical nonlinearities.
he classical alternative to this is to employ an incremental computational homogenization scheme in a nested setting, known as
he FE2 method (Feyel, 1999), to solve the forward problem. As pointed out in the extensive review by Geers et al. (2010), the

computational expense associated with numerical homogenization calls for strategies that exploit them efficiently. The findings
n Xia and Breitkopf (2016) also echo this concern that the principal difficulty in realizing nonlinear multiscale structures is

indeed the excessive computational burden that arises due to multiple realizations of FE2 computing within the TO problem. Their
conclusions indicate that employing model-reduction techniques through database-type methods or data-driven techniques offers a
viable compromise.

Amongst these methods, neural network (Hornik et al., 1989; Ghaboussi et al., 1991) and Gaussian process (Rasmussen and
Williams, 2006) models are particularly attractive for explicitly mapping the microstructural descriptors to the homogenized
esponse (Bessa et al., 2017). Notably, neural networks with recurrent units are even capable of modeling history-dependent
aterial responses such as plasticity (Mozaffar et al., 2019). Furthermore, a natural advantage of employing neural networks to

capture the homogenized constitutive behavior is the ease of obtaining derivatives for both the tangent stiffness of the material
as well as the sensitivities in TO, leveraging automatic differentiation. However, the application of ML-based constitutive models
in the context of nonlinear multiscale TO has been limited and demonstrated only to design structures undergoing infinitesimal
elastic deformation (White et al., 2019; Chandrasekhar et al., 2023), where analytical homogenization theories would suffice.
imultaneously, there is a growing literature on the use of ML in TO, with the overarching goal of reducing computational cost. For
xample, the work of Chi et al. (2021) introduces a method to accelerate the optimization procedure by employing an ML technique

to discover an underlying mapping between the design variables and the objective function sensitivity. Yet, as can be concluded
from the reviews by Woldseth et al. (2022), Shin et al. (2023), substantial contributions on the use of neural network-based material

odels in multiscale TO for large deformation problems have yet to be made.
The fundamental limitation that has hindered the use of typical black-box neural network (NN) constitutive models is their

failure to adhere to established physical principles, particularly in data-scarce situations, leading to concerns about accuracy and
numerical stability. In the case of hyperelasticity, this includes thermodynamic consistency, objectivity, the existence of a natural
state (Coleman and Noll, 1959), quasiconvexity, and volumetric growth conditions (Ball, 1976), in addition to material-dependent
symmetry conditions. Polyconvexity is a convenient and tractable condition to ensure quasiconvexity (and thereby ellipticity), which
s needed to prove the existence of minimizers for the variational problem being solved in the forward analysis. However, in the case
f hyperelastic composites, like the ones we consider here, the homogenization step can lead to a loss of ellipticity (and therefore
uasiconvexity) despite each phase individually being polyconvex (Braides, 1994). This implies that even under a data-rich scenario,
 black-box model trained using homogenized response data can exhibit microstructural instabilities leading to numerical difficulties
n the forward analyses performed in the optimization loop. Thus, it becomes all the more important to wrap the homogenized
esponse with a polyconvex envelope (sometimes referred to as polyconvexification, see Avazmohammadi and Ponte Castañeda, 2016)

to ensure that the response is stable during the optimization procedure. The development of the input convex neural networks
(ICNNs) (Amos et al., 2017; Chen et al., 2019) has enabled significant progress in realizing NN-based models that attempt to
incorporate polyconvexity among other relevant physical principles (As’ad et al., 2022; Klein et al., 2022). In particular, Linden
t al. (2023) have provided a rigorous framework for using ICNN-based models in the context of hyperelasticity formulated in terms

of strain invariants.
This article focuses on multiscale TO by introducing mechanically consistent machine learning material models into TO problems

considering hyperelastic composites, therefore replacing the use of conventional or phenomenological hyperelastic constitutive
3 
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Fig. 1. An overview of the proposed consistent machine learning-driven topology optimization framework for multiscale hyperelastic structures. The consistent
ML block learns the mapping between microstructural descriptors dm (set as the particle volume fraction 𝛼) and the homogenized constitutive response in an
offline phase adhering to the hyperelastic principles. The multiscale TO block treats 𝛼 as an additional design variable using its filtered counterpart to approximate
the spatially varying material response. By employing a differentiable ML material model in the forward analyses, the optimizer can efficiently update the design
variables using analytically computed sensitivities of the objective/constraint functions obtained through automatic differentiation. The magnified regions in the
multiscale TO block illustrate the filtered and projected pseudo-density field 𝜌̄ and the filtered microstructural particle volume fraction field 𝛼̂ in the initial design
state (left) and the final optimized state (right). Representative microstructures at select integration points are shown for the initial and final design states.

models in TO. The proposed methodology is valid when there exists scale separation between the material microstructure and
the macroscale structural design, as illustrated in Fig. 1 and discussed in detail later. The goal of this contribution is to provide a
design optimization framework for structures undergoing nonlinear material behavior while controlling macroscopic heterogeneity.
When compared to the literature on nonlinear small-strain multiscale TO (Xia and Breitkopf, 2016, 2015), our consistent ML-
based TO framework offers expressive yet flexible models that can learn microstructure-dependent homogenized responses in a
finite strain setting. Our method deviates from the conventional FE2-based concurrent TO strategies by circumventing the nested
computational evaluations. Instead, we employ the microstructure-dependent ML model that converts the (average) macroscopic
strain state to an (average) macroscopic stress state by replacing the microscale RVE with the ML model, enabling a two-field
optimization problem as illustrated in Fig. 1. Furthermore, we demonstrate the importance of considering data-driven material
models that include appropriate Physics constraints, which improves the robustness of the optimization process.

To that end, we propose an enhancement to the work of Linden et al. (2023) on ICNN-based models by means of a principal
stretch-based hyperelastic model that adheres to the necessary conditions for isotropic hyperelasticity (Ball, 1976) and use it as
a consistent machine learning block in the proposed TO framework illustrated in Fig. 1. A single microstructural descriptor, the
microstructural volume fraction, is considered to describe the microstructural variations; however, the framework can be extended
to include multiple microstructural descriptors, such as the orientation of the microstructural phases to capture anisotropy in
the homogenized response, among others. The data-driven design and analysis framework developed by Bessa et al. (2017) and
recently made open-source as the f3dasm package (van der Schelling et al., 2024) is employed to streamline the data generation
using RVEs (Yi and Bessa, 2023) that are needed for training the consistent ML constitutive models. We first compare the
performance of consistent ML models against classical single-scale phenomenological models through a series of TO examples for
maximizing external work, providing confidence in the approach prior to demonstrating the multiscale topology optimization results.
4 
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Subsequently, we demonstrate the design optimization examples that result in structures with spatially varying microstructures with
ifferent particle volume fractions and contrast them with structures without microstructural variations (fixed microstructures with
onstant volume fraction).

2. Macroscopic constitutive modeling of hyperelastic materials

The multiscale topology optimization framework, shown in Fig. 1, is realized by using a consistent ML-based constitutive model
that simply replaces the typical phenomenological constitutive model of the finite element analyses conducted during TO. The
ML model is trained in an offline procedure by homogenizing the response of Representative Volume Elements (RVEs) under
random deformation paths, as originally proposed in Bessa et al. (2017), Mozaffar et al. (2019). Therefore, prior to integrating the
ML material model in the TO framework, a data-driven process is formulated to train the microstructure-dependent constitutive
model. The process is detailed in Section 5, which can be broadly summarized in three steps: (1) design of experiments to
generate samples of RVE microstructures based on the microstructural descriptors, (2) finite element analyses of the RVEs subject
to applied average strain states, followed by a first-order homogenization scheme to determine the corresponding average stress
states, and (3) training the ML model to establish the surrogate constitutive law whose inputs are the macroscopic strain states
and the microstructural descriptors of interest (e.g., particle volume fraction of the RVE microstructure), and whose outputs are
the homogenized, macroscopic stress states. As usual, we assume a separation of scales, with the characteristic dimension of the
RVE being much smaller than that of the macroscopic problem while also being larger than the characteristic dimension of the
microstructural features of each material phase. As mentioned, this first-order homogenization strategy employed for data generation
is identical to past works (Yvonnet et al., 2013; Bessa et al., 2017), but Appendix F is also provided for readers unfamiliar with how
the RVE boundary value problem is defined.

Throughout this manuscript, we refer to the kinematic and kinetic quantities at the macroscopic scale to avoid confusion between
he single and multiple scale settings. We consider a total Lagrangian formulation and choose the Green–Lagrange strain tensor 𝑬
s the primary kinematic variable, computed using the deformation gradient 𝑭 and the right Cauchy–Green deformation tensor 𝑪
ia

𝑪 ∶= 𝑭 𝖳𝑭 ; 𝑬 ∶= 1
2
(𝑪 − 𝟏) , (1)

and the second Piola–Kirchhoff stress 𝑺 as the corresponding energetically conjugate variable. To avoid interpenetration of matter,
he condition 𝐽 ∶= det 𝑭 !

> 0 must hold. In the multiscale setting, these quantities correspond to their homogenized counterparts
n accordance with the Hill–Mandel lemma. From the solution to the (periodic) boundary value problem at the microscale subject
o the macroscopic deformation gradient 𝑭 , the macroscopic Piola–Kirchhoff stress is obtained through a volume average of its
icroscopic counterpart, i.e. 𝑷 ≡ ⟨𝑷 𝜇⟩. The second Piola–Kirchhoff stress is then obtained from the relation 𝑺 ∶= 𝑭 −1𝑷 . With the
efinition of consistent macroscopic quantities, the conditions set for the constitutive relation between the second Piola–Kirchhoff
tress 𝑺 and the Green–Lagrange strain 𝑬 are identical for the single and multiple scale settings, and hence the following discussion
s valid for both.

2.1. Hyperelasticity conditions

In order to enforce consistency with the constitutive restrictions relevant to hyperelastic materials in the ML models, this section
briefly reviews the fundamental concepts of hyperelasticity. The constitutive definition of hyperelastic materials is provided through
a strain energy density function 𝜓 , whose derivative with respect to a strain measure directly relates to the definition of the
thermodynamically consistent conjugate stress measure (Coleman and Noll, 1959). If we define 𝜓 = 𝜓̂(𝑬), then the energetically
onjugate stress measure — the second Piola–Kirchhoff stress, is obtained as 𝑺 = 𝜕𝑬 𝜓̂ .

The reference configuration of the body must correspond to a natural state (Coleman and Noll, 1959), i.e. a zero-valued minimum
stored energy density state that is stress-free:

𝜓̂(𝑬)
!
≥ 0 s.t. 𝜓̂(𝑬)|𝑬=𝟎

!
= 0 and 𝑺(𝑬)|𝑬=𝟎

!
= 𝟎 (2)

Following the principle of objectivity (Coleman and Noll, 1959), the material behavior should be independent of the observer,
implying that the strain energy density remains invariant to orthogonal transformations 𝑸 to the displacement gradient 𝑭 . Since
he right Cauchy–Green deformation 𝑪 is objective by definition, i.e. 𝑪 = 𝑭 𝖳𝑭 = 𝑭 𝖳𝑸𝖳𝑸𝑭 = (𝑸𝑭 )𝖳(𝑸𝑭 ), the Green–Lagrange
train 𝑬 is also objective, c.f. (1). Thus, formulating the strain energy density as 𝜓̂(𝑬) below ensures objectivity:

𝜓̃(𝑸𝑭 ) = 𝜓̂(𝑬) = 𝜓̃(𝑭 ) (3)

Furthermore, the material body cannot be compressed to a volume of zero or expanded to an infinite volume. As a result, the
strain energy density of hyperelastic materials has to satisfy the volumetric growth condition:

𝜓 → ∞ as (𝐽 → 0+ ∨ 𝐽 → ∞) (4)
5 
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In order to satisfy the requirements for the existence of total potential energy minimizers associated with the boundary value
roblem, the strain energy density 𝜓 should also be quasiconvex. 1 For a twice differentiable function, quasiconvexity implies

the satisfaction of the Legendre–Hadamard condition or ellipticity and thereby – rank-1 convexity. However, directly imposing
quasiconvexity on a strain energy density 𝜓 is challenging, as the non-pointwise nature of the condition makes it intractable to
verify whether a given function is quasiconvex. Furthermore, the stringent growth conditions assumed for quasiconvexity (Morrey,
1952) preclude any singular behavior, such as the strain energy density 𝜓 → ∞ as 𝐽 → 0+.

Polyconvexity (Ball, 1976) is a more tractable condition that arises from generalizing the notions of duality for convex functions
o the vectorial context, bridging the above limitations. A strain energy density 𝜓̃(𝑭 ) is said to be polyconvex if:

𝜓̃(𝑭 ) = (𝑭 , cof 𝑭 , det 𝑭 ) where (⋅) is a convex function (5)

By restricting the strain energy density to be polyconvex, one may arrive at far more physically useful functions within the
context of hyperelasticity, i.e., not only does polyconvexity imply quasiconvexity, but it also establishes the existence of minimizers
hat are valid under weaker growth conditions necessary to accommodate singular behavior such as 𝜓 → ∞ as 𝐽 → 0+.

For isotropic hyperelasticity, Theorem 5.2 from Ball (1976) provides the sufficient conditions for polyconvexity of the strain
energy density function. Let 𝜆1, 𝜆2, 𝜆3 be the principal stretches associated with the deformation gradient 𝑭 and ̃(⋅) a convex function
n its arguments. Then a strain energy density function 𝜓 of the form:

𝜓̃(𝑭 ) = ̃(𝜆1, 𝜆2, 𝜆3, 𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1, 𝐽 ) 𝐽 = 𝜆1𝜆2𝜆3 = det 𝑭 (6)

is isotropic and polyconvex as per (5) if ̃ is symmetric and non-decreasing in the principal stretches (𝜆1, 𝜆2, 𝜆3) as well as their
pair-wise products (𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1).

Note that such a strain energy density function 𝜓 has to additionally satisfy the natural state conditions (2) and the volumetric
growth conditions (4) to be a valid and useful hyperelastic model, respectively. We remark that many of the existing isotropic
yperelastic models such as Neo-Hookean, Mooney–Rivlin, Arruda–Boyce, Blatz–Ko, etc. (see Holzapfel, 2002) satisfy these
onditions via constructing the strain energy density in terms of the invariants of some objective strain measure such as the
ight Cauchy–Green deformation tensor 𝑪 or the left Cauchy–Green deformation tensor 𝑩. However the sufficient conditions still
orrespond to (6).

2.2. Consistent machine learning for material modeling

Feed-forward neural networks (FFN) have universal approximation properties (Hornik et al., 1989; Cybenko, 1989) and can
represent any continuous function to arbitrary accuracy provided enough data. As opposed to the classical approach of formulating
a strain energy density function 𝜓 based on physical intuition and then fitting the parameters to experimental data, neural
networks, with their superior representation capabilities, can directly learn arbitrarily complex material models from experimental
r numerically generated data for nonlinear elastic and plastic properties (Bessa et al., 2017). However, as discussed in Section 2.1,

the constitutive model for hyperelasticity should correspond to a thermodynamically consistent strain energy density function 𝜓 that
satisfies conditions (2), (3), (4), and (5) along with the necessary material symmetry conditions (e.g., isotropy). Standard FFNs
do not have inductive biases that guarantee that the strain energy density function they learn satisfies the conditions set forth for
yperelasticity. Thus, a feasible alternative consists of employing the so-called input convex neural networks (ICNNs) (Amos et al.,

2017) and constructing a polyconvex strain energy density function that satisfies the conditions for hyperelasticity (Klein et al.,
2022; As’ad et al., 2022; Linden et al., 2023; Kalina et al., 2023, 2024).

Amongst the literature on ICNN-based ML models for hyperelasticity, the work by Linden et al. (2023) was the first to enforce
the physical principles pertaining to hyperelasticity (see Section 2.1) rigorously. First, as we explain in Appendix A, the ICNN
architecture has to be modified so that the appropriate convexity and non-negativity constraints are applied to the input of the
network. Secondly, the enforcement of the natural state condition (2) should not compromise the polyconvexity condition. This is a
oint we shall revisit later in this section. These two issues were resolved in Linden et al. (2023) and their successive works. However,

their approach to modeling material symmetry through invariants introduces an undesirable limitation in the model expressivity,
particularly in the case of isotropy. Appendix B demonstrates an example of the limitation of invariant-based ICNN models. Since
ur interest is in modeling isotropic hyperelasticity with as much expressivity as possible, we propose a different formulation.

In our work, we employ the alternative ICNN formulation from Chen et al. (2019) to define the strain energy density function 𝜓
for hyperelastic materials (see Appendix A). Unlike the prior invariant-based model architectures, we propose a model architecture
that enforces the sufficient condition for polyconvexity for isotropic materials (6) in terms of the principal stretches 𝜆1, 𝜆2, 𝜆3.
Based on the arguments we present in Appendices A and B, we propose to employ an ICNN-based model that takes in input

= {𝜆1, 𝜆2, 𝜆3, 𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1, 𝐽 ,−𝐽}. In order to enforce the symmetry with respect to the principal stretches (𝜆1, 𝜆2, 𝜆3) and

1 Solving a typical boundary value involving hyperelastic materials corresponds to finding the minimizer for the total elastic energy potential 𝛱 t ot al(𝝋,𝑭 ) =
∫0

𝜓̃(𝑭 ) d𝑉 −𝛱ext er nal(𝝋). If one ignores the body force potential 𝛱ext er nal(𝝋), the total energy potential 𝛱 t ot al(𝝋,𝑭 ) can be viewed as a functional of the stored
energy density function 𝜓̃ . The existence of a minimizer for the total elastic energy potential relies on the constitutive restriction of the hyperelastic strain energy
density to be quasiconvex (Ball, 1976). This follows from (Morrey, 1952, 1966) that quasiconvexity of a function (together with certain continuity and growth
ypotheses) is the necessary and sufficient condition for its functional to be weakly lower semicontinuous, which in turn establishes the existence of minimizers
or the functional.
6 
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Fig. 2. Schematic illustration of the consistent machine learning model for isotropic hyperelasticity. The input to the neural network is 𝑬, which passes through
a fixed transformation layer  to arrive at Λ̃ that subsequently goes through input convex neural layers to arrive at polyconvex output  . This output is
regularized for the natural state condition (2) and passed through a gradient layer, which obtains the second Piola–Kirchhoff stress 𝑺 as in (10). Extension of
the model to include microstructural descriptors dm is achieved by appending the input space of the ICNN. The treatment of the microstructural descriptor dm
is such that the ICNN output (strain energy density) is convex with respect to the microstructural descriptor, which is a reasonable assumption for the volume
fraction 𝛼 of a stiff particle in a soft matrix.

their pair-wise products (𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1) while also remaining consistent with (6), we employ a simple and effective symmetric
weight sharing strategy through which the symmetry condition for isotropy is inherently satisfied (see also Appendix B). The
growth condition corresponding to 𝜓 → ∞ as 𝐽 → ∞ is handled naturally due to the convex nature of the ICNN. However, the
singularity associated with 𝐽 = 0 requires special treatment due to limited data availability in the region 𝐽 → 0+. Yet we argue
that the behavior of the strain energy density as 𝐽 → 0+ has to be learned from the experimental data. For this reason, rather than
adding a fixed coercive function to the strain energy density definition, as suggested in Linden et al. (2023) and other conventional
hyperelastic models, we add a convex non-decreasing term to the input to our isotropic ICNN. We, therefore, choose the term
𝑓 (𝐽 ) = − ln 𝐽 that is a convex, decreasing function in 𝐽 (𝐽 !

> 0). By constructing the strain energy density as an ICNN with inputs
Λ̃ = {𝜆1, 𝜆2, 𝜆3, 𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1, 𝐽 ,−𝐽 ,− ln 𝐽}, the singularity point becomes embedded in the model, and the volumetric growth
condition (4) becomes satisfied and learnable from the experimental data.

Next, we address the natural state condition (2). This is achieved by adding a correction function 0 to the ICNN output that
ensures that the strain energy density function 𝜓 and the second Piola–Kirchhoff stress 𝑺 vanishes at the natural state 𝑬 = 𝟎. The
overall strain energy density function 𝜓 can be formulated as:

𝜓̂(𝑬) = ̃(Λ̃(𝑬)) =  (Λ̃(𝑬)) + stress
0 (𝑬) + energy

0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

0(𝑬)

where  energy
0 = − (Λ̃(𝑬))||

|𝑬=𝟎 (7)

A stress correction term  stress
0 (𝑬) formulated in the form:

 stress
0 (𝑬) = −𝜕𝑬 (Λ̃(𝑬))||

|𝑬=𝟎
∶𝑬 (8)

satisfies the natural state condition similarly to the correction terms proposed in As’ad et al. (2022) but violates polyconvexity in
addition to the material symmetry condition, as remarked in Linden et al. (2023). To address this, we propose a stress correction
term following the projection approach inspired by the weighted sum of derivatives method proposed in Linden et al. (2023) to
obtain a polyconvex stress correction term:

 stress
0 (Λ̃(𝑬)) =  stress

0 (𝐽 ) = −𝑐0(𝐽 − 1) with 𝑐0 = −
9
∑

𝑖=1
𝜉𝑖𝜕Λ̃𝑖 (Λ̃(𝑬))||

|𝑬=𝟎
(9)

where 𝝃 = {1∕3, 1∕3, 1∕3, 2∕3, 2∕3, 2∕3, 1,−1, 1} correspond to weights for the derivatives with respect to the inputs Λ̃ = {𝜆1, 𝜆2, 𝜆3,
𝜆 𝜆 , 𝜆 𝜆 , 𝜆 𝜆 , 𝐽 ,−𝐽 ,− ln 𝐽}. A detailed derivation of the polyconvex stress correction term is provided in Appendix C. The second
1 2 2 3 3 1
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Piola–Kirchhoff stress 𝑺 is then obtained via differentiation of the strain energy density function 𝜓̂ with respect to the Green Lagrange
strain measure:

𝑺 = 𝜕𝑬 𝜓̂(𝑬) = 𝜕𝑬 (Λ̃(𝑬)) + 𝜕𝑬0(Λ̃(𝑬))

= 𝜕𝑬 (Λ̃(𝑬)) −
9
∑

𝑖=1
𝜉 𝜕Λ̃𝑖 (Λ̃(𝑬))||

|𝑬=𝟎
𝐽𝑪−1 (10)

The overall architecture of the resulting ICNN-based consistent ML model for hyperelasticity is illustrated in Fig. 2. The input
to the neural network is the Green–Lagrange strain tensor 𝑬, which is transformed to the input Λ̃ for the ICNN through a fixed
transformation layer  . The ICNN then computes the strain energy density function 𝜓̂(𝑬) that satisfies objectivity, material symmetry,
olyconvexity as well as the natural state condition (2) and the thermodynamically consistent second Piola–Kirchhoff stress 𝑺 is obtained
s in (10). We remark that it is possible to use the ICNN architecture to define an isotropic hyperelastic model that satisfies the

conditions for hyperelasticity (c.f. Linden et al., 2023). However, such a model can have limitations due to the hard enforcement
of convexity on the pre-set invariants. A detailed discussion of this point is presented in Appendix B.

Extension of the consistent ML hyperelastic model to include microstructural descriptors is achieved by extending the input
space of the ICNN so that the constitutive mapping now corresponds to 𝑺(𝑬, dm) = 𝜕𝑬 𝜓̂(𝑬, dm). In the most generalized setting, the
microstructural descriptor dm could be included in the ML model through the partial input convex neural network (PICNN) (Amos
et al., 2017), wherein no convexity-related constraints are imposed on output strain energy density function 𝜓 with respect to the
microstructural descriptor. In the present study involving two-phase hyperelastic composites with a soft matrix and stiff particle, we
consider the microstructural descriptor dm to be the volume fraction 𝛼 of the stiff particle phase, which could be considered to hold
a convex relationship with the strain energy density function 𝜓 . As a result, the microstructural descriptor dm = 𝛼 is introduced in
the model through a simple extension of the input space of the ICNN, as illustrated in Fig. 2.

3. Topology optimization formulation

We employ a standard density-based topology optimization scheme in which each finite element, 𝑒, is assigned a scalar pseudo
density parameter, 𝜌𝑒 ∈ [0, 1], reflecting the presence 𝜌𝑒 = 1 or absence 𝜌𝑒 = 0 of the material within the element. The design
problem is regularized by means of a standard linear filtering technique (Bourdin, 2001) with a user-specified length scale, 𝑟𝜌, in
order to mitigate the checkerboard effect and mesh dependency issues, resulting in the filtered design variables 𝜌̂𝑒. This may be

athematically expressed as:

𝜌̂𝑒 = 𝜙𝜌𝑒𝑖𝜌𝑖, 𝜙𝜌𝑒𝑖 =
ℎ𝑒𝑖𝑉𝑖 (no sum)
∑𝑁elem
𝑗=1 ℎ𝑒𝑗𝑉𝑗

, ℎ𝑒𝑖 = max
(

0, 𝑟𝜌 − |

|

|

|

|

|

𝒙𝑒 − 𝒙𝑖
|

|

|

|

|

|

)

(11)

where 𝒙𝑒 represents the centroid of element 𝑒 and ‖⋅‖ denotes the Euclidean norm.
Subsequently, the filtered design is projected by means of a smooth Heaviside function (Wang et al., 2010), in order to

significantly reduce intermediate densities that may develop as a result of the filtering technique.

𝜌̄𝑒 =
t anh(𝛽𝜌𝜂𝜌) + t anh(𝛽𝜌(𝜌̂𝑒 − 𝜂𝜌))
t anh(𝛽𝜌𝜂𝜌) + t anh(𝛽𝜌(1 − 𝜂𝜌))

(12)

The filtered and projected pseudo-density field 𝜌̄𝑒 is then used in a SIMP interpolation scheme (Zhou and Rozvany, 1991; Bendsøe,
1989) during the forward analysis. To ensure numerical stability in the large deformation finite element simulations, we adopt the
energy interpolation scheme proposed in Wang et al. (2014) which takes the form,

𝜓𝑒 = 𝜒𝑒(𝜌̄𝑒)𝜓𝑒,𝛾𝑒 wit h 𝜒𝑒(𝜌̄𝑒) = 𝜖 + (1 − 𝜖)𝜌̄𝑝𝑒 (13)

where 𝑝 is SIMP penalization parameter to penalize intermediate densities. The function 𝜓𝑒,𝛾𝑒 is the interpolated strain energy density
and is defined as

𝜓𝑒,𝛾𝑒 = 𝜓(𝑬(𝑭 𝑒𝛾𝑒 )) − 𝜓𝐿(𝛾𝑒∇sy m𝒖𝑒) + 𝜓𝐿(∇sy m𝒖𝑒)
= 𝜓(𝑬(𝑭 𝑒𝛾𝑒 )) − (1 − 𝛾2𝑒 )𝜓𝐿(∇sy m𝒖𝑒) (14)

which consists of the solid phase strain energy density 𝜓(⋅) and small deformation linear elastic stored energy density 𝜓𝐿(⋅). The
ffective deformation gradient and symmetric gradient operator used above are defined as

𝑭 𝑒𝛾𝑒 = ∇𝛾𝑒𝝋𝑒 = 𝟏 + 𝛾𝑒∇𝒖𝑒 and ∇sy m(⋅) = 1∕2(∇(⋅) + ∇(⋅)𝖳) (15)

where the interpolation factor 𝛾𝑒 takes the value 1 for solid elements and 0 for void elements. This results in a geometrically nonlinear
treatment for solid elements and small strain kinematics for the void elements. A smooth Heaviside projection function is used
to compute the strain energy density interpolation parameter 𝛾𝑒, providing a differentiable transition between the two kinematic
formulations:

𝛾𝑒 =
t anh(𝛽𝜓𝜂𝜓 ) + t anh(𝛽𝜓 (𝜒𝑒 − 𝜂𝜓 ))
t anh(𝛽𝜓𝜂𝜓 ) + t anh(𝛽𝜓 (1 − 𝜂𝜓 ))

(16)
8 
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Algorithm 1 Incremental update of the nodal displacements & load factor
Input: Nodal displacements 𝒖𝑛−1 and load factor 𝜁𝑛−1 at pseudo-time 𝑡𝑛−1; Generalized applied displacement 𝑐𝑛
Output: Nodal displacements 𝒖𝑛 and load factor 𝜁𝑛 at pseudo-time 𝑡𝑛

1: Initialize Newton iteration counter 𝑘 = 1
2: Initialize 𝒖(𝑘−1)𝑛 = 𝒖𝑛−1, 𝜁

(𝑘−1)
𝑛 = 𝜁𝑛−1

3: Initialize 𝛥𝒖(𝑘−1)𝑛 = 𝟎, 𝛥𝜁 (𝑘−1)𝑛 = 0, 𝛥𝑐𝑛 = 𝑐𝑛 − 𝑐𝑛−1
4: while |

|

|

|

|

|

𝐑
(

Θ, 𝒖(𝑘−1)𝑛 , 𝜁 (𝑘−1)𝑛

)

|

|

|

|

|

|2
> t olNR ⋅ ||

|

|

|

|

𝐑
(

Θ, 𝒖(0)𝑛 , 𝜁 (0)𝑛

)

|

|

|

|

|

|2

5: Compute 𝐊𝑇 = 𝜕𝐑
𝜕𝒖 (Θ, 𝒖(𝑘−1)𝑛 , 𝜁 (𝑘−1)𝑛 )

6: Compute 𝛿𝒖𝑅 = −𝐊−1
𝑇 𝐑(Θ, 𝒖(𝑘−1)𝑛 , 𝜁 (𝑘−1)𝑛 )

7: Compute 𝛿𝒖𝑓0 = 𝐊−1
𝑇 𝒇 0

8: Compute 𝛿 𝜁 = 𝛥𝑐𝑛−𝒇0⋅𝛥𝒖
(𝑘−1)
𝑛 +𝒇0⋅𝛿𝒖𝑅

𝒇0⋅𝛿𝒖𝑓0

9: Compute 𝛿𝒖 = 𝛿𝒖𝑅 + 𝛿 𝜁 𝛿𝒖𝑓0
10: Update 𝛥𝒖(𝑘)𝑛 = 𝛥𝒖(𝑘−1)𝑛 + 𝛿𝒖
11: Update 𝒖(𝑘)𝑛 = 𝒖𝑛−1 + 𝛥𝒖

(𝑘)
𝑛

12: return 𝒖𝑛 = 𝒖(𝑘)𝑛 , 𝜁𝑛 = 𝜁 (𝑘)𝑛

The set of design variables controlled by the optimizer, denoted by Θ ∶= {Θ𝑒|∀𝑒 = 1⋯𝑁𝑒𝑙 𝑒𝑚} represents the macroscopic
ensity design variable 𝜌𝑒, i.e. Θ𝑒 ≡ {𝜌𝑒} in the single-scale setting or additionally include the microstructural design variable,
.e. Θ𝑒 ≡ {𝜌𝑒, 𝛼𝑒} at each element 𝑒 in the multiscale setting. In a similar manner to the macroscopic density field, a design length
cale on the particle volume fraction field is prescribed via a linear filtering operation to produce a filtered particle volume fraction,
̂𝑒, in each element to obtain a smooth variation of the field across the topology. Consistent with Eq. (11), we represent this operation,
̂ 𝑖 = 𝜙𝛼𝑖𝑗𝛼𝑗 , via the separate filter matrix 𝝓𝛼 constructed with user-specified radius, 𝑟𝛼 . To simplify notation, the set of all physical
design variables, i.e., the filtered (and projected) design variables, is labeled as Θ̄. Depending upon the problem setting, Θ̄ may be
composed of the set of all filtered and projected macroscopic density design variables 𝝆̄ (single-scale) or additionally include the
microstructural design variables, Θ̄ ≡ {𝝆̄, 𝜶̂} (multiscale).

A total Lagrangian formulation is used to compute the internal force in each element (𝑒) of the form:

 𝑖𝑛𝑡𝑒 (Θ̄𝑒, 𝒖𝑒,𝑛) =
𝜕

𝜕𝒖𝑒,𝑛 ∫𝛺0𝑒

𝜓𝑒 d𝑉 (17)

at pseudo-time increment, 𝑛, with integration over the element in the reference configuration, 𝛺0𝑒 ⊂ 𝛺0. Subsequently, the element
contributions are then assembled into their global counterpart,  𝑖𝑛𝑡. Global equilibrium is then achieved via the solution of the
residual equations at the 𝑛t h pseudo-time increment. As Θ̄ may be represented as a function of Θ, the global residual equations
may be written as:

𝐑(Θ, 𝒖𝑛, 𝜁𝑛) =  𝑖𝑛𝑡(Θ, 𝒖𝑛) − 𝜁𝑛𝒇 0 = 𝟎
𝒇 0 ⋅ 𝒖𝑛 = 𝑐𝑛 (18)

The modified generalized displacement control method (Leon et al., 2014) is an effort to mitigate instabilities associated with
load control in large strain topology optimization problems, while also providing more flexibility over the load distribution than
standard displacement control. Note that 𝒇 0 is a constant vector containing the load distribution, whereas the load factor, 𝜁𝑛,
controls the magnitude of the applied load in each pseudo-time increment. The load factor at each step is determined via the
dditional equation in (18), representing a user-specified weighted average of the displacements with the constant nonzero external

applied force distribution vector, 𝒇 0. This weighted average displacement is constrained to be equal to the parameter 𝑐𝑛 at the 𝑛t h
pseudo-time step. The forward analyses begin in an undeformed state corresponding to zero nodal displacements and zero loads
(i.e., 𝒖0 = 𝟎, 𝜁0 = 0). With 𝒖𝑛−1, 𝜁𝑛−1 known, the nodal displacements and load factor at the subsequent pseudo-time increment, 𝑛,
are obtained via the procedure provided in Algorithm 1 with evenly spaced generalized applied displacements, 𝑐𝑛, between 𝑐0 = 0
and the user-specified value, 𝑐𝑁 , at the final step, corresponding to 𝑛 = 𝑁 .

The optimization problem is formulated as a work maximization problem subject to constraints imposed on the material volume
fractions. This is defined mathematically via the following:

max
Θ

𝑊𝑒𝑥𝑡 =
𝑁
∑

𝑛=1

1
2
(

𝜁𝑛 + 𝜁𝑛−1
) (
𝑐𝑛 − 𝑐𝑛−1

)

s.t. 𝑔(𝑚)(Θ) ≤ 𝑔(𝑚)max, 𝑚 = 1,… , 𝑀
Θmin ⪯ Θ ⪯ Θmax

with: 𝐑(Θ, 𝒖𝑛, 𝜁𝑛) =  𝑖𝑛𝑡(Θ, 𝒖𝑛) − 𝜁𝑛𝒇 0 = 𝟎 ∀𝑛 = 1,… , 𝑁
𝒇 ⋅ 𝒖 = 𝑐

(19)
0 𝑛 𝑛
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where Θmin and Θmax represent the side constraint bounds on the design variables. For benchmark problems, there is a single
constraint (i.e. 𝑀 = 1) corresponding to the material volume fraction:

𝑔(1)(Θ) = 𝑔(Θ) = 1
∑𝑁𝑒𝑙 𝑒𝑚
𝑒=1 𝑉𝑒

𝑁𝑒𝑙 𝑒𝑚
∑

𝑒=1
𝜌̄𝑒𝑉𝑒 (20)

where 𝑉𝑒 is the volume of element 𝑒. The macroscopic design density variables are bounded by 𝜌𝑒 ∈ [0, 1] at the element level.
Subsequently, for the two-scale optimization examples, two separate constraints are included on each material phase (i.e. 𝑀 = 2):

𝑔(1)(Θ) = 𝑔inc(Θ) = 1
∑𝑁𝑒𝑙 𝑒𝑚
𝑒=1 𝑉𝑒

𝑁𝑒𝑙 𝑒𝑚
∑

𝑒=1
𝛼̂𝑒𝜌̄𝑒𝑉𝑒

𝑔(2)(Θ) = 𝑔mat (Θ) = 1
∑𝑁𝑒𝑙 𝑒𝑚
𝑒=1 𝑉𝑒

𝑁𝑒𝑙 𝑒𝑚
∑

𝑒=1
(1 − 𝛼̂𝑒)𝜌̄𝑒𝑉𝑒 (21)

where the first constraint equation corresponds to the particle volume fraction and the second restricts the quantity of matrix
aterial. Here, in addition to the macroscopic density design variables side constraint 𝜌𝑒 ∈ [0, 1], the particle volume fraction

design variables are bounded by 𝛼𝑒 ∈ [𝛼𝓁 , 𝛼𝑢] at the element level, where 𝛼𝓁 and 𝛼𝑢 are the lower and upper bounds on the particle
volume fraction design variables.

4. Sensitivity analysis

Here we provide the derivation for the sensitivity of the external work objective function with respect to the design variables,
Θ. First, the sequence of algebraic operations reducing to our expression for the external work integrated using the trapezoidal rule
is shown below.

𝑊𝑒𝑥𝑡 =
𝑁
∑

𝑛=1

1
2

(

𝒇 (𝑛)
𝑒𝑥𝑡 + 𝒇 (𝑛−1)

𝑒𝑥𝑡

)

⋅
(

𝒖𝑛 − 𝒖𝑛−1
)

=
𝑁
∑

𝑛=1

1
2
(

𝜁𝑛𝒇 0 + 𝜁𝑛−1𝒇 0
)

⋅
(

𝒖𝑛 − 𝒖𝑛−1
)

=
𝑁
∑

𝑛=1

1
2
(

𝜁𝑛 + 𝜁𝑛−1
) (

𝒇 0 ⋅ 𝒖𝑛 − 𝒇 0 ⋅ 𝒖𝑛−1
)

=
𝑁
∑

𝑛=1

1
2
(

𝜁𝑛 + 𝜁𝑛−1
) (
𝑐𝑛 − 𝑐𝑛−1

)

(22)

To obtain the sensitivity of this function, we directly differentiate the residual equation at time step, 𝑛.
𝑑
𝑑Θ

𝐑(Θ, 𝒖𝑛, 𝜁𝑛) = 𝑑
𝑑Θ

 𝑖𝑛𝑡(Θ, 𝒖𝑛) − 𝒇 0
𝑑 𝜁𝑛
𝑑Θ

= 𝟎

=
𝜕 𝑖𝑛𝑡
𝜕Θ

+
𝜕 𝑖𝑛𝑡
𝜕𝒖𝑛

𝑑𝒖𝑛
𝑑Θ

− 𝒇 0
𝑑 𝜁𝑛
𝑑Θ

= 𝟎

=
𝜕 𝑖𝑛𝑡
𝜕Θ

+𝐊𝑇
𝑑𝒖𝑛
𝑑Θ

− 𝒇 0
𝑑 𝜁𝑛
𝑑Θ

= 𝟎

⟹
𝑑𝒖𝑛
𝑑Θ

= 𝐊−1
𝑇

(

𝒇 0
𝑑 𝜁𝑛
𝑑Θ

−
𝜕 𝑖𝑛𝑡
𝜕Θ

)

(23)

Recalling the constraint, 𝒇 0 ⋅ 𝒖𝑛 = 𝑐𝑛, we also have the following useful relationship:
𝑑
𝑑Θ

(

𝒇 0 ⋅ 𝒖𝑛
)

= 𝒇 0 ⋅
𝑑𝒖𝑛
𝑑Θ

= 0

⟹ 𝒇 0 ⋅
𝑑𝒖𝑛
𝑑Θ

= 𝒇 0 ⋅𝐊−1
𝑇

(

𝒇 0
𝑑 𝜁𝑛
𝑑Θ

−
𝜕 𝑖𝑛𝑡
𝜕Θ

)

= 0 (24)

Rearranging this final equation we have the sensitivity of the load factor at time step, 𝑛,

𝑑 𝜁𝑛
𝑑Θ

=
𝒇 0 ⋅𝐊−1

𝑇 ⋅ 𝜕 𝑖𝑛𝑡𝜕Θ

𝒇 0 ⋅𝐊−1
𝑇 ⋅ 𝒇 0

=
𝛿𝒖𝑓0 ⋅

𝜕 𝑖𝑛𝑡
𝜕Θ

𝒇 0 ⋅ 𝛿𝒖𝑓0
(25)

which does not require the solution of any additional system of equations (assuming that the 𝛿𝒖𝑓0 vectors were saved during the
forward analysis). All required partial derivatives can be easily obtained using automatic differentiation. Eq. (25) can then be used
o obtain the final sensitivity of the external work as provided in Eq. (22) since each 𝑐𝑛 is a constant.

𝑑 𝑊𝑒𝑥𝑡
𝑑Θ

=
𝑁
∑

𝑛=1

1
2

(

𝑑 𝜁𝑛
𝑑Θ

+
𝑑 𝜁𝑛−1
𝑑Θ

)

(

𝑐𝑛 − 𝑐𝑛−1
)

(26)

Finally, the chain rule is required to obtain the derivative with respect to the design variables, {𝝆,𝜶}, through the projection function
and the corresponding filters in the standard manner.

5. Numerical experiments and results

In the present study, we consider two-phase composite material microstructures with stiff particles embedded in a soft matrix.
An Arruda–Boyce (AB) hyperelastic model (Arruda and Boyce, 1993) is used to represent the soft rubbery matrix, while the stiff
10 
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particle phase is represented by a Neo-Hookean model (see Bergstrom, 2015). The Arruda–Boyce model is parameterized by the
initial bulk modulus 𝜅0, the initial shear modulus 𝜇0, and 𝜆𝑚, which is associated with the chain locking stretch. The strain energy
density function is given by:

𝜓𝐴𝐵 = 𝜇
5
∑

𝑖=1
𝑎𝑖 𝛽

𝑖−1(𝐼 𝑖
𝐶1 − 3𝑖) + 𝜅0

2

(

𝐽 2 − 1
2

− ln 𝐽
)

where

𝜇 = 𝜇0

(

1 + 3
5𝜆2𝑚

+ 99
175𝜆4𝑚

+ 513
875𝜆6𝑚

+ 42039
67375𝜆8𝑚

)−1

and

𝛽 = 1
𝜆2𝑚

; 𝑎1 =
1
2
; 𝑎2 =

1
20

; 𝑎3 =
11
1050

; 𝑎4 =
19
7000

; 𝑎5 =
519

673750

(27)

Here, 𝐼𝐶1 = 𝐽−2∕3𝐼𝐶1 is the modified first invariant of the right Cauchy–Green deformation tensor 𝑪 , and 𝐽 is the determinant
f the deformation gradient tensor 𝑭 . The Neo-Hookean model is parameterized by the initial shear modulus 𝜇0 and the initial bulk
odulus 𝜅0:

𝜓𝑁 𝐻 =
𝜇0
2

(

𝐼𝐶1 − 3) + 𝜅0
2

(𝐽 − 1)2 (28)

Note that the initial bulk modulus is related to the initial Poisson’s ratio and shear modulus 𝜇0 as 𝜅0 = 2𝜇0(1+𝜈0)
3(1−2𝜈0)

. The material
roperties considered for the matrix phase are 𝜇mat

0 = 3.098 × 10−1 MPa, 𝜆mat
𝑚 = 5.083 to closely resemble natural rubber (Treloar, 1944;

Bergstrom, 2015) with 𝜈mat
0 = 0.45. The material properties for the particle phase chosen such that its Young’s modulus is 100 times

stiffer than that of the matrix, with a Poisson’s ratio 𝜈inc0 = 0.3, resulting in 𝜇inc0 = 3.455 × 101 MPa. Prior to demonstrating the multiscale
optimization results, we first report the performance of the consistent ML models against classical single-scale phenomenological
models. In order to make a meaningful comparison, we choose the soft rubbery material for the single-scale assessment, using the
soft matrix material parameters presented above. For the sake of brevity, we present the results under 2D plane strain considerations
in this section, while a 3D proof of concept example is presented in Appendix D.3

5.1. Design of experiments for generating dataset for model calibration

Two datasets are generated to calibrate two distinct models: dataset 𝑠 to train the model 𝑠 for single-scale TO evaluations, and
dataset 𝑚 to train the microstructure-dependent model 𝑚 for two-scale TO evaluations. The dataset 𝑠 consists of input–output
tuples of the Green–Lagrange strain 𝑬 and the corresponding second Piola–Kirchhoff stress 𝑺, with the 𝑖t h data sample corresponding
o (𝑬,𝑺)𝑖. The dataset 𝑚 for the model 𝑚 for the two-scale TO has an additional microstructural descriptor dm, which here is the
olume fraction of the particle phase in the RVE, 𝛼 — making the 𝑖t h data sample ((𝛼 ,𝑬),𝑺)𝑖. The strain states for data generation
re obtained through Sobol sampling of the principal stretch space spanned by 𝜆𝑑 ∈ [0.75, 1.75] and random sampling of orthonormal
rincipal directions 𝐍𝑑 for 𝑑 ∈ (1,… , 𝑁𝐷) where 𝑁𝐷 is the spatial dimensionality of the problem. The right stretch tensor is then
btained as 𝑼 =

∑

𝜆𝑑𝐍𝑑 ⊗ 𝐍𝑑 , from which the Green–Lagrange strain tensor is computed as 𝑬 = 1
2 (𝑼

𝑇𝑼 − 𝑰). This ensures that
he strain sampling is space filling in the principal stretch space and non-informative sample points are limited. Under plane strain
onditions, 𝑁𝐷 = 2, and 𝜆3 is set to unity. The target second Piola–Kirchhoff stresses for the datasets 𝑠 comprised of 212 = 4096
ample strain states are obtained by a direct evaluation of the second Piola–Kirchhoff stress tensor 𝑺 = 𝜕𝑬𝜓𝐴𝐵 at the sampled
reen–Lagrange strain states. In order to generate the second Piola–Kirchhoff stresses in the dataset 𝑚 for the microstructure-
ependent model, the data-driven design and analysis framework developed by Bessa et al. (2017), Yi and Bessa (2023), van der

Schelling et al. (2024) is employed to perform RVE simulations with periodic boundary conditions in the commercial FE software
ABAQUS (Systèmes, 2021), including the subsequent volumetric averaging of the stress measure. The microstructural geometry is
ully described by the volume fraction 𝛼 of the particle phase (0.1 ≤ 𝛼 ≤ 0.5), which is generated by randomly distributing circular
articles of radius 𝑟𝜇 in a square RVE domain of side length 𝐿RVE. Following the approach discussed by Bessa et al. (2017), the

macroscopic deformation gradient tensor 𝑭 necessary for applying the RVE boundary conditions is obtained in its rotational invariant
orm:

𝑭 = 𝑼 = 𝑪1∕2 = (2𝑬 + 𝟏)1∕2 (29)

For the considered materials and particle radius (𝑟𝜇 = 0.15 mm), a 4 mm RVE side length (𝐿RVE = 4.0 mm) was found
o be sufficiently large to achieve a statistically representative response for volume fraction, 𝛼. The macroscopic second Piola
irchhoff stresses are obtained corresponding to 210 macroscopic Green–Lagrange strain states for representative realizations of the

microstructure for each volume fraction 𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, totaling to 5 × 210 data samples. Upon eliminating data samples
orresponding to the non-converged RVE simulations, the final dataset 𝑚 consists of 4787 data samples.
11 
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Table 1
Model and training hyperparameters.

Hyperparameter 𝑠 𝑚

No. hidden layers 2 2
No. neurons per layer 8 16
Batch size 128 128
Initial learning rate 1 × 10−3 5 × 10−3

Hyperparameter 𝑠 𝑚

Exponential decay rate 0.5 0.5
Decay transition epoch interval 3000 3000
Max epochs 15 000 15 000
Early stopping patience 5000 5000

Table 2
Performance metrics of the trained models.

Model Metric 𝑠
t r ain 𝑠

val 𝑠
t est

𝑠
1 − R2 3.41 × 10−8 3.66 × 10−8 3.22 × 10−8
RMSE 1.14 × 10−4 1.14 × 10−4 1.14 × 10−4
MAE 8.47 × 10−5 8.51 × 10−5 8.52 × 10−5

Model Metric 𝑚
t r ain 𝑚

val 𝑚
t est

𝑚
1 − R2 1.13 × 10−4 1.20 × 10−4 1.53 × 10−4
RMSE 1.04 × 10−2 1.11 × 10−2 1.19 × 10−2
MAE 4.23 × 10−3 4.32 × 10−3 4.41 × 10−3

Fig. 3. Stress response of the single-scale consistent ML model compared to the ground truth phenomenological model for a uniaxial strain loading case. The
plot is split into two subplots to better visualize the compressive and tensile loading ranges.

5.2. Model training

The strategy for training the ML models is standardized and described in this section. The dataset  associated with a model
is split into training, validation, and test datasets in the ratio 60 ∶ 20 ∶ 20. The mean squared error loss function between the

redicted second Piola–Kirchhoff stress 𝑺 and the target second Piola–Kirchhoff stress 𝑺∗, given by:

□ = 1
|□|

∑

|□|

‖

‖

𝑺 − 𝑺∗
‖

‖

2 , (30)

is used as the objective function in the training process, where □ is a placeholder for the dataset split under consideration, and
|□| is the number of samples in the dataset split and ‖⋅‖ denotes the Euclidean norm. The model training is performed using the
Adam optimizer (Kingma and Ba, 2014) with decoupled weight decay regularization (Loshchilov and Hutter, 2019), together with
n exponential decaying learning rate scheduler by minimizing the loss function t r ain on the training dataset t r ain. The validation
oss val on the validation dataset val is monitored during the training process to prevent overfitting through early stopping, as
ell as to tune the hyperparameters of the model. The hyperparameters of the models and the training process, tuned through a

imple grid search method, are summarized in Table 1. The predictive capability of the tuned model is then evaluated on the test
ataset t est . Table 2 summarizes the performance of the trained models on the training, validation, and test datasets in terms of

root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics.2

2 The machine learning workflow is implemented in JAX (Bradbury et al., 2018) and realized through the Equinox library (Kidger and Garcia, 2021), and
leverages the gradient processing and optimization library Optax (DeepMind et al., 2020). All the ML trainings are performed on a standard desktop with NVIDIA

TX 3050 Ti GPU.
12 



H. Vijayakumaran et al. Journal of the Mechanics and Physics of Solids 196 (2025) 106015 
Fig. 4. Strain energy density contour plot of the single-scale consistent ML model and the corresponding difference plot to the ground truth phenomenological
model. The region within the red box corresponds to the trained domain.

Fig. 5. Stress response of the microstructure-dependent consistent ML model compared to the ground truth obtained through RVE simulations for a uniaxial
strain loading scenario for (left) compressive loading, and (right) tension loading range. The top and bottom plots show the stress components 𝑆11 and 𝑆22
separately.

5.3. Evaluation of model effectiveness

We begin by evaluating the effectiveness of the consistent ML model in representing classical single-scale phenomenological
models. As mentioned earlier, an Arruda Boyce hyperelastic model (27) corresponding to the soft rubbery matrix phase is considered
the ground truth for evaluating the approximation capability of the consistent ML material models. Fig. 3 illustrates the constitutive
response of the trained model 𝑠 compared to the ground truth phenomenological model for uniaxial loading (i.e., variation of
13 
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Table 3
Topology optimization problem hyperparameters.

Hyperparameter Symbol Value

Filter radius∗ 𝑟𝜌 4.0
SIMP penalty parameter (initial value) 𝑝 1.0
SIMP ersatz parameter 𝜖 10−5

Projection strength (initial value) 𝛽𝜌 1.0
Projection threshold 𝜂𝜌 0.5
Energy interpolation transition strength 𝛾𝜌 32.0

Hyperparameter Symbol Value

Energy interpolation transition threshold 𝜂𝛾 0.01
Linearized elastic energy Young’s modulus 𝐸lin 8.984 × 10−1
Linearized elastic energy Poisson’s ratio 𝜈lin 0.45
Forward problem number of time steps 𝑁 8
Relative tolerance for Newton convergence t olNR 10−6

MMA move limit 0.15

∗ Filter radius for cantilever beam problem is 6.0.

𝐸11, with all other strain components set to zero). The figure highlights how closely the trained model 𝑠 approximates the ground
truth phenomenological model, which is in agreement with the performance metrics provided in Table 2. Importantly, the model
hows impressive predictive performance beyond the training range. To visualize the predictive performance of the model more
omprehensively, the strain energy density is compared to the ground truth phenomenological model in Fig. 4. From the plot,
isualized in the principal stretch space, we see that the trained model 𝑠 exhibits high interpolation accuracy, with acceptable

extrapolation performance attributed largely to the relevant restrictions in the consistent ML model architecture. The extrapolation
uality is observed to deteriorate as the principal strain state {𝜆1, 𝜆2} → 𝟎, which corresponds to the asymptote as 𝐽 → 0, yet the
odel is able to predict the strain energy density response in the vicinity of the singularity with reasonable accuracy.

Next, we assess the ability of the consistent ML model to capture the microstructure-dependent response variations encapsulated
within the two-phase composite material dataset 𝑚. We are now specifically interested in evaluating how well the model 𝑚

learns the mapping between the particle volume fraction 𝛼 of the microstructure and the homogenized material response. The
stress response corresponding to uniaxial loading for particle volume fractions 𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in both compression and
ension is shown in Fig. 5. Note that this data is not present in the training dataset. Naturally, similar to the single-scale case, the
icrostructure-dependent model 𝑚 preserves the hyperelasticity conditions. More importantly, the model captures the dependence

f 𝛼 on the stress response very well, suggesting that the assumption of convexity with respect to 𝛼 in the model architecture was
ppropriate.

5.4. Single-scale topology optimization

We now verify the performance of the consistent ML model in the context of topology optimization via direct comparison
against results obtained using the ‘‘classical’’ or phenomenological model. The intent of this exercise is to provide confidence
in the trained ML model for use in topology optimization by demonstrating nearly identical designs in a setting with directly
comparable conventional results. Note that the update of the design variables is performed using the method of moving asymptotes
(MMA) (Svanberg, 1987).

In the main text, we present the results for two examples — the T-bracket and a cantilever beam. In Appendix D.1, we also
provide the results for a portal frame example, and a three-dimensional fixed–fixed beam example is presented in Appendix D.3.
The results in these appendices are consistent with the examples discussed in the main text.

We define each design domain with reference to a base dimension, 𝐿 = 100 mm, and the parameters provided in Table 3 are
used unless otherwise specified. A continuation scheme is employed on both the SIMP penalty exponent and the projection strength
parameter. The SIMP penalty exponent is initialized to 𝑝 = 1 and increased in increments of 𝛥𝑝 = 1 each continuation step up
to a maximum value of 𝑝 = 4. In subsequent continuation steps, the projection strength parameter is doubled up to a maximum
value computed according to da Silva et al. (2019), from an initial value of 𝛽𝑝 = 1. The next continuation step begins when either
he percent difference in the objective function over the previous five iterations has fallen below a tolerance of 0.1 or a maximum

number of 50 iterations is reached. A minimum of 20 optimization iterations is also enforced in each step.

5.4.1. Single-scale topology optimization: T-bracket example
The T-bracket design domain and boundary conditions are illustrated in Fig. 6a, corresponding to an average downward

displacement of 𝑐𝑁 = 0.3𝐿 applied at the center of the right-most edge. The domain is discretized into 35,400 four-node quadrilateral
elements within which the displacement field is interpolated using standard bilinear shape functions. In this example, we employ
 volume fraction upper bound of 𝑔max = 0.5. The convergence history is provided in Fig. 7, where the continuation updates on the

SIMP penalty exponent 𝑝 and projection strength parameter 𝛽𝜌 are apparent through the sharp changes in the objective function
alues. Apart from the expected jumps in the objective function values at optimization iterations corresponding to the continuation
teps, the convergence history is smooth with few oscillations. The visualized designs in Fig. 7 show the progression of the topology
s the optimization process proceeds using the ML material model. The final design closely resembles the design obtained using the
round truth phenomenological model, as evident from the difference plot provided in Fig. 6b and the similar convergence history

shown in Fig. 7. A value of 𝛿𝜌 = 1 indicates material addition, and 𝛿𝜌 = −1 indicates material removal from the design obtained
using the ground truth phenomenological model. The deformed configuration of the final design is shown in Fig. 6c.
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Fig. 6. (a) T-bracket boundary value problem. (b) Difference plot between the design obtained using the ML model and the design obtained using the ground
truth phenomenological model, where 𝛿𝜌 = 1 indicates material addition, and 𝛿𝜌 = −1 indicates material removal. (c) Deformed configuration of the design
obtained using the ML model.

Fig. 7. Convergence history for the T-bracket example. Illustrated designs correspond to the optimization formulation using the ML model at iterations with
selected continuation steps.

5.4.2. Single-scale topology optimization: Cantilever beam example

We now consider a cantilever beam with the design domain, as shown in Fig. 8(a). The cantilever beam is fixed along the left edge,
and a vertically downward average displacement 𝑐𝑁 = 0.6𝐿 is applied near the center of the right edge. The domain is discretized
using 4-node quadrilateral elements with a uniform mesh of edge length 0.5 mm, adding up to a total of 40000 elements. This example
is particularly interesting as the cantilever beam problem subject to large deformation is a challenging case for hyperelastic materials
due to the presence of buckling instabilities. We remark that for this problem, we considered hyperparameters, viz. material volume
fraction constraint 𝑔 = 0.6 and the filter radius 𝑟 = 6.0, that lead to final designs not susceptible to large buckling instabilities.
max 𝜌
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Fig. 8. (a) Cantilever boundary value problem. (b) Difference plot of the design obtained using the ML model to the design obtained using the ground truth
phenomenological model, where 𝛿𝜌 = 1 indicates material addition, and 𝛿𝜌 = −1 indicates material removal. (c) Deformation of the design obtained using the
ML model.

Fig. 9. Convergence history for cantilever beam example. Illustrated designs correspond to the optimization formulation using the ML model at iterations with
selected continuation steps.

Although not the focus of this article, future work could include buckling criteria explicitly as part of the optimization formulation
to systematically prevent such behavior.

Nonetheless, minor instabilities occur during the optimization process, which has a visible effect on the convergence history as
well as the intermediate designs, highlighting the challenging nature of the cantilever beam problem, as shown in Fig. 9. We observe
16 
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Fig. 10. (a) Deformed configuration of the final design obtained using the ML model with varying microstructure (b) Difference plot of the design obtained
using the ML model with varying microstructure to the design obtained using the ML model with fixed microstructure. (c) Convergence history for the T-bracket
TO problem with varying microstructure versus fixed microstructure.

that while the continuation updates on the SIMP penalty exponent 𝑝 produces sharp changes in the objective function values, the
projection strength parameter 𝛽𝜌 updates, especially in the later stages of the optimization process, do not lead to significantly abrupt
changes in the objective. This is due to the interference of minor instabilities altering the deformation state of the design, resulting
in the prolonged presence of gray regions in the design, which is only slowly resolved with the 𝛽𝜌 updates. See the progression of
the topology as the optimization process proceeds using the ML material model in Fig. 9 for reference. Interestingly, this leads the
convergence histories to differ very slightly, although the final objective values remain close to one another. As a result, we see
that the final design obtained using the ML model resembles the design obtained using the ground truth phenomenological model.
Nonetheless, there are subtle differences around the boundaries of the two designs, as shown in the difference plot in Fig. 8(b). The
deformed configuration of the final design obtained using the ML model is depicted in Fig. 8(c).

5.5. Multi-scale topology optimization

We now demonstrate the ability of the framework to perform simultaneous design optimization at two spatial scales. The
optimization problem considered here involves maximizing the external work (19) subject to material volume fraction constraints
applied separately to the matrix and particle phases, as specified in (21). Note that in this section, we no longer have the benefit of
a ground truth phenomenological model with which we can compare our results. For a fair evaluation of any potential benefits of
the two-scale optimization, i.e., optimizing both the pseudo density field 𝜌 and the particle phase volume fraction 𝛼, we compare
the results with a baseline case in which the microstructure is fixed (i.e., 𝛼 = 𝛼0 is fixed) while also satisfying the same material
volume fraction constraints. In both cases, we employ the microstructure-dependent ML model 𝑚 to represent the hyperelastic
composite. The value of 𝛼0 for the baseline case in each example is set based on the side constraint bounds on the total volume
fraction of the particle phase (𝑔incmax) and matrix phase (𝑔mat

max), i.e., 𝛼0 = 𝑔incmax∕(𝑔
inc
max+𝑔

mat
max). Similarly, the total material volume fraction

for the baseline case is set to 𝑔max,0 = 𝑔incmax + 𝑔
mat
max.

Two examples are considered in this section (the T-bracket and the cantilever beam), which can be compared with the single-scale
topology optimization results. The geometry, finite element discretization, and boundary conditions for these examples are discussed
in Section 5.4. We remark that Appendix D.1 contains an additional multiscale TO example for the portal frame boundary value
problem.

5.5.1. Multi-scale topology optimization: T-bracket example
The T-bracket example is subject to total volume fraction side constraint bounds of 𝑔mat

max = 0.3 and 𝑔incmax = 0.2. Therefore, the
baseline case with fixed microstructure has a fixed particle volume fraction 𝛼0 = 0.4 and a total volume fraction constraint of
𝑔max,0 = 0.5. The convergence history of the objective function for this example is shown in Fig. 10c. Consistent with intuition, the
objective value for the case in which microstructural variations are allowed is indeed lower. From the final design with varying
microstructure (Fig. 10a) and the difference plot with the baseline case with fixed microstructure (Fig. 10b), we observe that the
number of macroscopic voids remains unchanged, but their shapes change. We also notice that the material addition is occurs close
to regions chosen to have lower particle volume fraction 𝛼 by the optimizer, and the material removal is made in regions dominated
by higher particle volume fractions.
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Fig. 11. (a) Deformed configuration of the final design obtained using the ML model with varying microstructure (b) Difference plot of the design obtained
with varying microstructure to the design obtained with fixed microstructure. (c) Convergence history for the cantilever TO problem with varying microstructure
vs. fixed microstructure.

Table 4
Performance comparison of designs obtained using varying and fixed microstructure.

Problem Design External work External load factor

(mJ∕mm) Improvement (N∕mm) Improvement

T-bracket Fixed microstructure 21.244 – 1.4808 –
Varying microstructure 24.179 13.8% 1.6892 14.1%

Cantilever Fixed microstructure 12.895 – 0.43766 –
Varying microstructure 17.263 33.9% 0.60115 37.4%

Portal frame Fixed microstructure 9.1433 – 0.84417 –
Varying microstructure 10.522 15.1% 0.97354 15.3%

5.5.2. Multi-scale topology optimization: Cantilever beam example
The final example considered here corresponds to the cantilever beam. Consistent with the example in Section 5.4.2, the volume

fraction upper bounds for the matrix and particle phases are set to 𝑔mat
max = 0.4 and 𝑔incmax = 0.2, corresponding to a total volume

fraction upper bound of 𝑔max,0 = 0.6 for the baseline case with fixed microstructure. The fixed microstructure particle volume
fraction that satisfies the material volume fraction constraint is then set to 𝛼0 = 1

3 . It can be seen from the final design with varying
microstructure (Fig. 11a) and the difference plot with the baseline case (Fig. 11b) that the former achieves an improved objective
value by adjusting the internal material-void distribution in addition to the variation of the particle volume fraction 𝛼. Again, the
material addition predominantly occurs close to regions of lower particle volume fraction 𝛼, whereas material removal happens
close to regions with higher particle volume fraction. Similar to the previous examples, we observe a lower objective value when
allowing the microstructure to vary, demonstrating the added benefit of the proposed approach.

5.5.3. Multi-scale topology optimization: Discussion
The results from the above examples demonstrate the potential of the proposed framework to obtain improved designs by

exploring the design space at multiple spatial scales. In Table 4, we provide a comparison of the external work and the external load
factor for the cases with varying and fixed microstructure throughout the macroscopic design. The reader is referred to Appendix D.2
for additional information regarding the portal frame example.

We observe that the designs obtained using the varying microstructure have a significantly better objective value (external work)
and, thereby, a higher external load factor compared to the designs obtained using the fixed microstructure. More importantly, these
results demonstrate for the first time the large potential improvements that may be obtained by exploring multiscale designs for
structures exhibiting large nonlinear responses. If improvements on the order of 15% to 35% are possible by considering simple
microstructures controlled by a single descriptor (particle volume fraction), future improvements will surely be more significant.
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6. Conclusions

A framework is presented for designing multiscale heterogeneous structures with spatially varying hyperelastic microstructures.
Central to this work is the ML material model, which captures the homogenized response of the microstructure as a differentiable
function of microstructural descriptors while adhering to important physical principles.

Our results show that ensuring polyconvexity, among other relevant restrictions, not only results in consistent ML models of high
ccuracy but also produces reliable final designs in the topology optimization process. An equally important benefit of adhering

to these physical principles is the guarantee of the existence of solutions in the forward problem. The differentiable mapping
of the microstructural descriptors to the homogenized response enables the computation of the tangent stiffness as well as the
sensitivities of the relevant objective/constraint functions with respect to the design variables, facilitating efficient, simultaneous
design optimization at two spatial scales. The presented approach provides an effective method for designing future functionally
graded structures and materials with impactful microstructural details. Our findings indicate that two-scale optimization can
significantly improve performance compared to the baseline case with spatially uniform microstructure. The examples presented
produce optimized designs that align with our intuition and demonstrate that expanding the design space to multiple scales
allows the optimizer to achieve higher design performance. Although the focus of this work has been to build a proof of concept
computational framework, we hope this may be used by designers and manufacturers as a tool to explore new design spaces for
structures with spatially varying microstructures.

The proposed framework is general and can be extended to include additional microstructural descriptors, such as the orientation
of microstructural phases to capture anisotropy in the homogenized response. In this future work, we intend to explore this through
partial input convex neural networks (Amos et al., 2017). An extension of the consistent ML to handle path and history-dependent
material for topology optimization is also envisioned, wherein we also anticipate a potential acceleration of the optimization process
due to the absence of Newton–Raphson iterations (Mozaffar et al., 2019). While manufacturability and variability in loading
conditions have not been in the scope of this work, the literature on additive manufacturing shows immense potential for the
realization of such designs (e.g., Truby and Lewis, 2016; Xu et al., 2021; Zhu et al., 2024). We hope to leverage our past experience
incorporating manufacturability constraints in TO (Vatanabe et al., 2016) to explore this exciting field in the future.
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Appendix A. Modification to ICNN for modeling hyperelasticity

Here, we recall three fundamental facts about convexity from Boyd and Vandenberghe (2004) that are useful within the context
of input convex neural networks.

1. If 𝑓𝑖 ∶ 𝑹𝑛 → 𝑹 are convex functions and 𝑐𝑖 ≥ 0, then the function 𝑔 ∶ 𝑹𝑛 → 𝑹 defined as:

𝑔(𝒚) =
𝑚
∑

𝑖=1
𝑐𝑖𝑓𝑖(𝒚), 𝐝𝐨𝐦 𝑔 =

𝑚
⋂

𝑖=1
𝐝𝐨𝐦 𝑓𝑖 (A.1)

is convex.
2. The composition of a convex function with an affine mapping preserves convexity. If the function 𝑓 ∶ 𝑹𝑛 → 𝑹 is a convex

function, then a function 𝑔 ∶ 𝑹𝑚 → 𝑹 defined as

𝑔(𝒚) = 𝑓 (𝑾 𝒚 + 𝒃), 𝐝𝐨𝐦 𝑔 = {𝒚 |𝑾 𝒚 + 𝒃 ∈ 𝐝𝐨𝐦 𝑓} (A.2)

is also convex, with 𝑾 ∈ 𝑹𝑛×𝑚, 𝒃 ∈ 𝑹𝑛.
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Fig. A.12. Input neural network architecture.

3. The composition of a convex function with a convex non-decreasing function is convex. If ℎ ∶ 𝑹𝑚 → 𝑹𝑛 is a convex function
and 𝑓 ∶ 𝑹𝑛 → 𝑹 is a convex non-decreasing function, then the composition 𝑔 ∶ 𝑹𝑚 → 𝑹 defined as:

𝑔(𝒚) = 𝑓 (ℎ(𝒚)), 𝐝𝐨𝐦 𝑔 = {𝒚 ∈ 𝐝𝐨𝐦ℎ |ℎ(𝒚) ∈ 𝐝𝐨𝐦 𝑓} (A.3)

is convex.

The ICNN proposed by Amos et al. (2017) as shown in Fig. A.12 uses (A.2) together with (A.3) in the first layer to achieve
convexity. In each of the subsequent layers (A.3) is used together with (A.1) for each core sub-layer, and (A.2) for each passthrough
sub-layer. Its mathematical definition for general vectorial input is defined as 𝑓 (𝒚;𝜽) ∶

𝒛𝑖+1 = 𝑖(𝑾
(𝑧)
𝑖 𝒛𝑖 +𝑾 (𝑦)

𝑖 𝒚 + 𝒃𝑖) for 𝑖 = 0,… , 𝑙 − 1
𝑓 (𝒚,𝜽) = 𝒛𝑙

(A.4)

where 𝒛𝑖 denotes the layers (with 𝒛0,𝑾 𝑧
0 ≡ 𝟎) to which convex and non-decreasing element-wise activation functions 𝑖(⋅) are

pplied. The learnable parameters are 𝜽 = {𝑾 (𝑧)
0∶𝑙−1,𝑾

(𝑦)
1∶𝑙−1, 𝒃0∶𝐿−1} where 𝑾 (𝑧)

0∶𝑙−1 are non-negative. For ensuring C2 continuity, the
ctivation function 𝑖(⋅) is chosen to be the softplus function and the positive weights are enforced by wrapping the weights 𝑾 (𝑧)

𝑖
in with a squared softplus function, following As’ad et al. (2022).

As noted in Section 2.1, one basic requirement in hyperelastic material modeling is that the strain energy density function 𝜓 is
olyconvex. Namely,

𝜓̃(𝑭 ) = (𝑭 , cof 𝑭 , det 𝑭 ) (A.5)

where (⋅) is a convex function in (𝑭 , cof 𝑭 , det 𝑭 ). In conventional constitutive modeling, the strain energy density function is often
expressed as a (convex) function of the invariants of an objective strain measure. The classic example of this corresponds to the
invariants 𝜾 = {𝐼𝐶1, 𝐼𝐶2, 𝐼𝐶3} of the right Cauchy–Green tensor, 𝑪 = 𝑭 𝖳𝑭 , since they satisfy polyconvexity and have desirable
symmetry features. However, such invariants cannot be used as input in the original ICNN implementation. The first layer and the
assthrough layers involve an unrestricted transformation (A.2) with weights that can be positive or negative, which, when applied to

the invariants, does not preserve convexity in the original parameters. Therefore, if it is desired to use the invariants, the treatment
should be in accordance with the convex non-decreasing composition (A.3), which implies that the transformation (A.2) should
be restricted to non-negative weights. However, if the invariant 𝐽 =

√

𝐼𝐶3 = det 𝑭 is used instead of 𝐼𝐶3, there need not be any
estrictions on the specific weights mapping 𝐽 . In effect, when using invariants as input, the ICNN should be modified so that it
esults in a function that is convex and non-decreasing in the invariants.

A similar argument holds when using the principal stretches or any of its convex combinations as input, as shown in Appendix B.
The only exception to this is the invariant 𝐽 , since the strain energy density function need not be non-decreasing in 𝐽 . The modified
ersion of the ICNN per Chen et al. (2019), provides a straightforward implementation for handling convexity and ensuring that
he output is non-decreasing in particular inputs. In this definition, an ICNN is expressed as a function, 𝑓 (𝒚;𝜽) defined by:

𝒛𝑖+1 = 𝑖(𝑾
(𝑧)
𝑖 𝒛𝑖 +𝑾 (𝑦̂)

𝑖 𝒚̂ + 𝒃𝑖) for 𝑖 = 0,… , 𝑙 − 1
𝑓 (𝒚̂,𝜽) = 𝒛𝑙

(A.6)

where 𝒚̂ represents the expanded input 𝒚̂ = [𝒚,−𝒚]𝖳, 𝒛𝑖 denotes the layers (with 𝒛0,𝑾 𝑧
0 ≡ 𝟎) to which convex and non-decreasing

lement-wise activation functions 𝑖(⋅) are applied, and 𝜽 = {𝑾 (𝑧)
0∶𝑙−1,𝑾

(𝑦̂)
1∶𝑙−1, 𝒃0∶𝐿−1} denotes the learnable parameters where 𝑾 (𝑧)

0∶𝑙−1
nd 𝑾 (𝑦̂)

0∶𝑙−1 are non-negative. Since all layers, including the passthrough layers, have non-negative weights, if the expanded input is
ot used (i.e., 𝒚̂ ≡ 𝒚), the output of the ICNN, as defined by Chen et al. (2019), becomes convex and non-decreasing in the inputs.

By not using the expanded inputs, except for 𝐽 , the ICNN (A.6) can be used to model hyperelastic materials with strain energy
ensity functions that are convex in 𝐽 and convex non-decreasing in the remaining inputs.
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Amongst the ICNN-based neural network models for hyperelasticity present in literature, Linden et al. (2023) and their
subsequent works have addressed this aspect by having non-negative weights overall. However, the authors omit the skip connections
presented in Chen et al. (2019).

Appendix B. Limitations of invariant-based ICNN models

When choosing a set of invariants as inputs, an ICNN should be convex, non-decreasing in those invariants (except for 𝐽 , as
𝜓 need not be non-decreasing in 𝐽 ) c.f. Appendix A. We theorize that such an ICNN would be limited in its ability to model an
arbitrary polyconvex strain energy density function 𝜓 .

Here, we limit the current discussion to isotropic cases where the conditions discussed in (6) hold. We aim to provide a simple
counter-example to show that a strain energy density in accordance with (6) cannot always be represented by a composition of
convex and non-decreasing functions of pre-chosen invariants (convex in 𝐽 ). Consider the Ogden model (Holzapfel, 2002), which
has a strain energy density function given by:

𝜓𝑂(𝑭 ) = 𝜓iso(𝜆̄1, 𝜆̄2, 𝜆̄3) + 𝜓vol(𝐽 )

=
{

𝑁
∑

𝑖=1

𝜇𝑖
𝑎𝑖
(𝜆̄𝑎𝑖1 + 𝜆̄𝑎𝑖2 + 𝜆̄𝑎𝑖3 − 3)

}

+ 𝜅
𝛽2

(𝛽 ln 𝐽 + 𝐽−𝛽 − 1)
(B.1)

We adopt 𝛽 = −2 as in Simo and Miehe (1992). For the sake of simplicity, we consider the case of 𝑁 = 1, 𝑎1 = 𝑎 = 6, and replace
1 = 𝜇. Note that 𝜆̄𝑖 = 𝐽−1∕3𝜆𝑖 and 𝐽 = 𝜆1𝜆2𝜆3. Then we have:

𝜓𝑂(𝑭 ) = 𝜇
6
(𝜆̄61 + 𝜆̄

6
2 + 𝜆̄

6
3 − 3) + 𝜅

4
(𝐽 2 − 1 − 2 ln 𝐽 )

=
𝜇
6
(𝐽−2(𝜆61 + 𝜆

6
2 + 𝜆

6
3) − 3) + 𝜅

4
(𝐽 2 − 1 − 2 ln 𝐽 )

(B.2)

This model is polyconvex by definition in (6), which can also be verified with a simple test. The strain energy density (B.2)
should be convex, non-decreasing in {𝜆1, 𝜆2, 𝜆3} and convex in 𝐽 . Let us obtain the derivatives of the strain energy density function
(B.2) with respect to Λ = {𝜆1, 𝜆2, 𝜆3, 𝐽}:

∇Λ𝜓𝑂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜇 𝐽−2𝜆51
𝜇 𝐽−2𝜆52
𝜇 𝐽−2𝜆53

− 1𝜇
3 𝐽

−3(𝜆61 + 𝜆
6
2 + 𝜆

6
3) +

𝜅
2 (𝐽 − 𝐽−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(B.3)

For all 𝜇 > 0, the derivatives of {𝜆1, 𝜆2, 𝜆3} are non-negative. Hence, the strain energy density function (B.2) satisfies the
non-decreasing condition in {𝜆1, 𝜆2, 𝜆3}.

The Hessian of the strain energy density function (B.2) with respect to Λ is:

∇2
Λ
𝜓𝑂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

5𝜇 𝐽−2𝜆41 0 0 −2𝜇 𝐽−3𝜆51
0 5𝜇 𝐽−2𝜆42 0 −2𝜇 𝐽−3𝜆52
0 0 5𝜇 𝐽−2𝜆43 −2𝜇 𝐽−3𝜆53

−2𝜇 𝐽−3𝜆51 −2𝜇 𝐽−3𝜆52 −2𝜇 𝐽−3𝜆53 𝜇 𝐽−4(𝜆61 + 𝜆
6
2 + 𝜆

6
3) +

𝜅
2 (1 + 𝐽−2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(B.4)

The principal minors 𝑀11, 𝑀22, and 𝑀33 are clearly positive for 𝜇 > 0. It is, therefore, sufficient that 𝑀44 > 0 for the Hessian
B.4) to be positive semi-definite. Checking this, we have:

𝑀44 =

|

|

|

|

|

|

|

|

|

|

|

5𝜇 𝐽−2𝜆41 0 0 −2𝜇 𝐽−3𝜆51
0 5𝜇 𝐽−2𝜆42 0 −2𝜇 𝐽−3𝜆52
0 0 5𝜇 𝐽−2𝜆43 −2𝜇 𝐽−3𝜆53

−2𝜇 𝐽−3𝜆51 −2𝜇 𝐽−3𝜆52 −2𝜇 𝐽−3𝜆53 𝜇 𝐽−4(𝜆61 + 𝜆
6
2 + 𝜆

6
3) +

𝜅
2 (1 + 𝐽−2)

|

|

|

|

|

|

|

|

|

|

|

(B.5)

which, after simplification, produces:

𝑀44 =
25𝜇3

2
𝐽−6(2𝜇(𝜆61 + 𝜆

6
2 + 𝜆

6
3) + 5𝜅(𝐽 4 + 𝐽 2)) (B.6)

For 𝜇 , 𝜅 > 0, the minor 𝑀44 is positive. Hence the strain energy density function (B.2) is convex in Λ.
Now, let the chosen invariants be 𝜾̌ = {𝐼𝐶1, 𝐼𝐶2, 𝐽}:

𝐼𝐶1 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3

𝐼𝐶2 = 𝜆21𝜆
2
2 + 𝜆

2
2𝜆

2
3 + 𝜆

2
3𝜆

2
1

𝐽 = 𝜆1𝜆2𝜆3

(B.7)
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The strain energy density function (B.2) can be expressed as a function of these invariants as:
𝜓̌𝑂(𝜾̌) =

𝜇
6
(𝐽−2(𝐼3𝐶1 − 3𝐼𝐶1𝐼𝐶2 + 3𝐽 2) − 3) + 𝜅

4
(𝐽 2 − 1 − 2 ln 𝐽 )

=
𝜇
6
𝐽−2(𝐼3𝐶1 − 3𝐼𝐶1𝐼𝐶2) + 𝜅

4
(𝐽 2 − 1 − 2 ln 𝐽 )

(B.8)

Here, we provide the extra steps for clarity:
𝐼3𝐶1 = (𝜆21 + 𝜆22 + 𝜆23)3

= 𝜆61 + 𝜆
6
2 + 𝜆

6
3

+ 3(𝜆41𝜆22 + 𝜆21𝜆42 + 𝜆42𝜆23 + 𝜆22𝜆43 + 𝜆43𝜆21 + 𝜆23𝜆41) + 6𝜆21𝜆22𝜆23
𝐼𝐶1𝐼𝐶2 = (𝜆21 + 𝜆22 + 𝜆23)(𝜆21𝜆22 + 𝜆22𝜆23 + 𝜆23𝜆21)

= 𝜆41𝜆
2
2 + 𝜆

2
1𝜆

2
2𝜆

2
3 + 𝜆

4
1𝜆

2
3

+ 𝜆42𝜆
2
1 + 𝜆

2
1𝜆

2
2𝜆

2
3 + 𝜆

4
2𝜆

2
3

+ 𝜆21𝜆
2
2𝜆

2
3 + 𝜆

4
3𝜆

2 + 𝜆43𝜆
2
1

= (𝜆41𝜆22 + 𝜆21𝜆42 + 𝜆42𝜆23 + 𝜆22𝜆43 + 𝜆43𝜆21 + 𝜆23𝜆41) + 3𝜆21𝜆22𝜆23
3𝐼𝐶1𝐼𝐶2 = 3(𝜆41𝜆22 + 𝜆21𝜆42 + 𝜆42𝜆23 + 𝜆22𝜆43 + 𝜆43𝜆21 + 𝜆23𝜆41) + 9𝜆21𝜆22𝜆23

𝐼3𝐶1 − 3𝐼𝐶1𝐼𝐶2 = 𝜆61 + 𝜆
6
2 + 𝜆

6
3 − 3𝜆21𝜆22𝜆23

3𝐽 2 = 3𝜆21𝜆22𝜆23
𝐼3𝐶1 − 3𝐼𝐶1𝐼𝐶2 + 3𝐽 2 = 𝜆61 + 𝜆

6
2 + 𝜆

6
3

(B.9)

The derivative of the strain energy density function (B.8) with respect to these invariants is:

∇𝜾̌𝜓̌𝑂 =

⎡

⎢

⎢

⎢

⎣

𝜇
2 𝐽

−2(𝐼2𝐶1 − 𝐼𝐶2)
− 𝜇

2 𝐽
−2𝐼𝐶1

− 𝜇
3 𝐽

−3(𝐼3𝐶1 − 3𝐼𝐶1𝐼𝐶2) + 𝜅
2 (𝐽 − 𝐽−1)

⎤

⎥

⎥

⎥

⎦

(B.10)

The derivative w.r.t 𝐼𝐶2 is negative for all 𝐼𝐶1, for any 𝜇 > 0. This implies that the strain energy density function (B.8) is not
non-decreasing in 𝐼𝐶2. Differentiating again, we obtain the Hessian of the strain energy density function (B.8) with respect to these
invariants:

∇2
𝜾̌ 𝜓̌𝑂 =

⎡

⎢

⎢

⎢

⎣

𝜇 𝐽−2𝐼𝐶1 − 𝜇
2 𝐽

−2 −𝜇 𝐽−3(𝐼2𝐶1 − 𝐼𝐶2)
− 𝜇

2 𝐽
−2 0 𝜇 𝐽−3𝐼𝐶1

−𝜇 𝐽−3(𝐼2𝐶1 − 𝐼𝐶2) 𝜇 𝐽−3𝐼𝐶1 𝜇 𝐽−4(𝐼3𝐶1 − 3𝐼𝐶1𝐼𝐶2) + 𝜅
2 (1 + 𝐽−2)

⎤

⎥

⎥

⎥

⎦

(B.11)

The principal minors of the Hessian (B.8) are:
𝑀11 = 𝜇 𝐽−2𝐼𝐶1 ,

𝑀22 = −𝜇
4
𝐽−4 < 0 ,

𝑀33 = −𝜇
2

8
𝐽−8(2𝜇(𝐼3𝐶1 + 𝐼𝐶1𝐼𝐶2) + 𝜅 𝐽 2(1 + 𝐽 2))

= −
[𝜇3

4
𝐽−8(𝐼3𝐶1 + 𝐼𝐶1𝐼𝐶2) +

𝜇2𝜅
8
𝐽−6(1 + 𝐽 2)

]

< 0 ,

(B.12)

two of which are negative for any 𝜇 , 𝜅 > 0. This implies that the Hessian is not positive semi-definite and, consequently, that the
strain energy density function (B.8) is not convex in 𝐼𝐶1, 𝐼𝐶2.

Hence we argue that an ICNN that is convex and non-decreasing in the invariants 𝐼𝐶1, 𝐼𝐶2, 𝐽 will not be able to represent the
strain energy density function (B.2). On the contrary, for isotropic hyperelasticity, if we built an ICNN that satisfied (6) directly, then
t would be able to represent any arbitrary isotropic hyperelastic strain energy density function, given a sufficient number of layers

and neurons. This can be achieved using an ICNN (A.6) with the input 𝒚̂ = Λ = {𝜆1, 𝜆2, 𝜆3, 𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1, 𝐽 ,−𝐽} with symmetric
enforcing 𝑾 (𝑦̂)

𝑖 through weight sharing for all the direct connections from the input (i.e., the first layer and all the passthrough
layers). Thus, 𝑾 (𝜆1)

𝑖 = 𝑾 (𝜆2)
𝑖 = 𝑾 (𝜆3)

𝑖 and 𝑾 (𝜆1𝜆2)
𝑖 = 𝑾 (𝜆2𝜆3)

𝑖 = 𝑾 (𝜆3𝜆1)
𝑖 for 𝑖 = 0,… , 𝑙 − 1 in (A.6).

Appendix C. Derivation of the stress correction term for the isotropic hyperelastic neural network model

The starting point for the derivation is due to the observation made in Linden et al. (2023), that a stress correction term  stress
0

f the form:

 stress
0 (𝑬) = −𝜕𝑬 (Λ̃(𝑬))||

|𝑬=𝟎
∶𝑬 (C.1)

violates the polyconvexity and material symmetry conditions. As an alternative, they propose a stress correction term based on a
eighted sum of derivatives method, where the wights are obtained via exploiting the chain rule and the behavior of derivative
22 
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of strain invariants at undeformed state. Here we adapt this approach to the principal stretch based isotropic hyperelastic neural
network model we have developed.

Recall the input to the model Λ̃ = {𝜆1, 𝜆2, 𝜆3, 𝜆1𝜆2, 𝜆2𝜆3, 𝜆3𝜆1, 𝐽 ,−𝐽 ,− ln 𝐽} as proposed in Section 2.2. Due to the symmetry
nforcement we have made, the derivative of the neural network output  with respect to the input Λ̃ respects the enforced
ymmetry. As, a result, we can consider a stress correction term for the strain energy function of the form:

 stress
0 = −

9
∑

𝑖=1
𝜕Λ̃𝑖 ( ̃Λ(𝑬))||

|𝑬=𝟎
(Λ̃𝑖 − Λ̃0

𝑖 ) (C.2)

The corresponding stress contribution could be obtained by the chain rule as:

𝑺 stress
0 = −

9
∑

𝑖=1
𝜕Λ̃𝑖 (Λ̃(𝑬))||

|𝑬=𝟎
𝜕𝑬 Λ̃𝑖 (C.3)

Due to symmetry enforcement, the above expression simplifies to:

𝑺 stress
0 = −(

3
∑

𝑖=1
ℎ1𝜕𝑬 Λ̃𝑖 +

6
∑

𝑗=4
ℎ2𝜕𝑬 Λ̃𝑗 + ℎ3𝜕𝑬 Λ̃7 + ℎ4𝜕𝑬 Λ̃8 + ℎ5𝜕𝑬 Λ̃9) (C.4)

which when evaluated at 𝑬 = 𝟎 gives:
𝑺 stress
0

|

|

|𝑬=𝟎
= −(ℎ1𝟏 + 2ℎ2𝟏 + ℎ3𝟏 − ℎ4𝟏 − ℎ5𝟏)
= −(ℎ1 + 2ℎ2 + ℎ3 − ℎ4 − ℎ5)𝟏 where

ℎ1 = 𝜕Λ̃1
 |

|

|𝑬=𝟎
= 𝜕Λ̃2

 |

|

|𝑬=𝟎
= 𝜕Λ̃3

 |

|

|𝑬=𝟎
;

ℎ2 = 𝜕Λ̃4
 |

|

|𝑬=𝟎
= 𝜕Λ̃5

 |

|

|𝑬=𝟎
= 𝜕Λ̃6

 |

|

|𝑬=𝟎
;

ℎ3 = 𝜕Λ̃7
 |

|

|𝑬=𝟎
; ℎ4 = 𝜕Λ̃8

 |

|

|𝑬=𝟎
; ℎ5 = 𝜕Λ̃9

 |

|

|𝑬=𝟎

(C.5)

Note that the stress contribution 𝑺 stress
0 coming from the correction term  stress

0 is not polyconvex. However, we can exploit
he fact that an affine transformation of 𝐽 preserves polyconvexity, and the fact that the derivative of 𝜕𝑬𝐽 = 𝐽𝑪−1, which when

evaluated at 𝑬 = 𝟎 becomes identity 𝟏, to arrive at a polyconvex stress correction term. The polyconvex alternative that result in
he requisite stress contribution at 𝑬 = 𝟎 as given in (C.5) may be obtained by defining a stress correction term:

 stress
0 = −

9
∑

𝑖=1
𝜉𝑖𝜕Λ̃𝑖 (Λ̃(𝑬))||

|𝑬=𝟎
(𝐽 − 1) (C.6)

where 𝝃 = { 1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1,−1, 1} are the weights that result in the requisite stress contribution as in (C.5). The corresponding

stress contribution can be obtained as:

𝑺 stress
0 = −

9
∑

𝑖=1
𝜉𝑖𝜕Λ̃𝑖 (Λ̃(𝑬))||

|𝑬=𝟎
𝐽𝑪−1 (C.7)

It can be clearly seen that evaluation of (C.7) at 𝑬 = 𝟎 gives the desired stress correction term as in (C.5):

𝑺 stress
0

|

|

|𝑬=𝟎
= −

9
∑

𝑖=1
𝜉𝑖𝜕Λ̃𝑖 (Λ̃(𝑬))||

|𝑬=𝟎
𝟏

= −
9
∑

𝑖=1
𝜉𝑖ℎ𝑖𝟏

= −(ℎ1 + 2ℎ2 + ℎ3 − ℎ4 − ℎ5)𝟏

(C.8)

Appendix D. Additional topology optimization examples assessing ML material model

D.1. Single-scale topology optimization: Portal frame example

Next, we consider a 2D portal frame with the design domain shown in Fig. D.13(a). Due to the symmetry in the geometry
and loading conditions, only half of the domain is considered for the TO problem. The support leg of the portal frame is fixed in
he vertical direction, and horizontal displacement is constrained along the edge subject to the symmetry condition. A vertically
ownward average applied displacement 𝑐𝑁 = 0.2𝐿 is applied at the center of the portal frame. The domain is discretized using
-noded quadrilateral elements with an unstructured mesh of nominal edge length 0.5 mm, resulting in a total of 28902 elements.
he TO problem is formulated with the objective of maximizing the external work done by the applied displacement, subject to a
aterial volume fraction constraint set by 𝑔 = 0.5.
max
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Fig. D.13. (a) Portal frame BVP (b) Deformation of the design obtained using the ML model (c) Difference plot of the design obtained using the ML model to
the design obtained using the ground truth phenomenological model.

Fig. D.14. Convergence history for portal frame TO problem. Visualized designs correspond to those corresponding to TO using ML model at iterations where
critical continuation parameter updates occur.
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Fig. D.15. (a) Deformed configuration of the final design obtained using the ML model with varying microstructure (b) Difference plot between the design
obtained with varying microstructure and the design obtained with fixed microstructure. (c) Convergence history for the portal frame TO problem with varying
microstructure vs. fixed microstructure.

The convergence history of the objective function for the portal frame, shown in Fig. D.14, indicates that the optimization process
using the ML model and the ground truth phenomenological model progresses in a similar manner. The objective curves and the
continuation scheme curves overlap for both the cases, which results in the intermediate as well as the final designs (see Fig. D.14)
obtained using the two material models to be almost identical. The difference plot in Fig. D.13(c) reinforces this observation.
Fig. D.13(b) illustrates the magnitude of deformation of the final design obtained using the ML model in its deformed state.

D.2. Multi-scale topology optimization: Portal frame example

The portal frame example with varying microstructure and the baseline fixed microstructure are set up with the same side
constraint bounds as the T-bracket example in Section 5.5.1. Visible differences are observed in the final topologies between the
varying microstructure and fixed microstructure cases, with the former containing 13 void regions and the latter containing 15.
The difference plot in Fig. D.15b highlights that although the external outlines of the designs are similar, there is considerable
rearrangement of the material in the internal regions of the designs. Similar to the T-bracket example, allowing the microstructure
to vary results in a lower objective value. The convergence history for the portal frame example in Fig. D.15c shows that the baseline
case with fixed microstructure undergoes a delayed update in the continuation scheme corresponding to the update in the penalty
parameter 𝑝 = 3. This induces a rightward shift in the convergence history when compared with the case with varying microstructure.
Consistent with the observations in the T-bracket example, the final design with varying microstructure (Fig. D.15a) has material
addition predominantly occurring close to regions with lower particle volume fraction 𝛼 and material removal happening close to
regions with higher particle volume fractions.

D.3. Single-scale topology optimization: 3D benchmark example with fixed–fixed beam

Finally, we consider a 3D fixed–fixed beam with the design domain, as shown in Fig. D.16(a). The primary intention of
considering this example is to assess the ‘‘sensitivity’’ of the optimization process to the differences in the phenomenological and ML
models, as well as to show that the framework is easily extensible to 3D problems. In order to train a 3D ML model, we employed the
design of experiment approach described in Section 5.1 to generate the training dataset 𝑠

3𝐷 consisting of 213 = 8192 sample strain
states by considering the spatial dimensionality 𝑁𝐷 = 3. The model and training hyperparameters and the performance metrics are
given in Tables D.5 and D.6 respectively.

The beam is fixed along the left and right faces and a downward average applied displacement 𝑐𝑁 = 0.3𝐿 is applied at the center
of the top surface of the beam. Due to symmetry in the geometry and loading conditions, only a quarter of the domain is considered
for this example. The domain is discretized using 8-node hexahedral elements with a uniform mesh of edge length 2 mm, adding up
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Fig. D.16. (a) Fixed–fixed beam BVP (b) Deformation of the design obtained using the ML model (c) Difference plot of the design obtained using the ML model
to the design obtained using the ground truth phenomenological model. A transparent shadow of the design obtained using the phenomenological model is
overlaid on the difference plot for reference. (d) Convergence history for the fixed–fixed beam 3D TO benchmark.

Table D.5
Model and training hyperparameters.
Hyperparameter Value

No. hidden layers 2
No. neurons per layer 8
Initial learning rate 1 × 10−2

Hyperparameter Value

Exponential decay rate 0.5
Decay transition epoch interval 1000
Decay end value 5 × 10−4

Hyperparameter Value

Max epochs 15 000
Batch size 128
Early stopping patience 5000

to 16250 elements. A volume fraction constraint upper bound of 𝑔max = 0.3 is imposed in this example. The optimization parameters
are as shown in Table 3, with the exception of the number of time steps, which is set to 15 for this example.

We observe that the final objective values using the ML model and the ground truth phenomenological model are almost identical.
The difference plot in Fig. D.16(c) shows no significant material addition or deletion in the final design obtained using the ML model
compared to the design obtained using the ground truth phenomenological model. The convergence history for the ML model shows
minor differences; however, the lateral shift is caused by slight delays in convergence within each continuation segment.
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Table D.6
Performance metrics of the trained model.

Model Metric Training dataset Validation dataset Test dataset

𝑠
3𝐷

1 − R2 2.06 × 10−5 2.03 × 10−5 2.15 × 10−5
RMSE 4.63 × 10−3 4.60 × 10−3 4.61 × 10−3
MAE 3.05 × 10−3 3.05 × 10−3 3.05 × 10−3

Fig. D.17. Design obtained using the ML model with (a) fixed microstructure (𝛼 = 𝛼0 = 0.4) and (b) Varying microstructure (𝛼 ∈ [0.1, 0.5]) for the T-bracket
TO problem. (c) Difference plot between the designs obtained using the varying microstructure and the fixed microstructure, obtained by subtracting the design
field 𝜌 obtained for the fixed microstructure from that obtained for the varying microstructure.

D.4. Supplementary results for the multi-scale topology optimization problems

In addition to the results presented in Section 5.5 for the T-bracket example and the cantilever example, as well as the results
for portal frame in Appendix D.2, we present supplementary results in Figs. D.17–D.19 for clarity.

Appendix E. Additional results concerning homogenized response of the representative volume elements

The homogenized response of the RVEs is not readily computable through simple analytical homogenization approaches such as
the rule of mixtures. Fig. E.20 shows the prediction of a rule of mixtures based model for the stress response of RVEs as a function
of the particle volume fraction 𝛼, which is obtained analytically as:

𝑺mix = 𝜕𝑬𝜓mix wher e 𝜓mix = 𝛼 𝜓inc + (1 − 𝛼)𝜓mat (E.1)

where, 𝜓inc = 𝜓𝑁 𝐻 and 𝜓mat = 𝜓𝐴𝐵 with the material parameters as given in Section 5. It can be clearly seen that the dependence of
the particle volume fraction is non-linear as the linear superposition, as in (E.1), does not capture the ground truth response obtained
through computational homogenization. This is due to the fact that the effective homogenized response has complex dependencies
due to the non-linear nature of the constituent phases, the geometrically non-linear setting, and the random nature of the particles.
In contrast, the microstructure-dependent ML model is able to capture the non-linear dependence of the stress response on the
particle volume fraction 𝛼, as shown in Fig. 5.

Another aspect of the RVEs considered in this work is the isotropic nature of their homogenized response. Although the
microstructure by itself is heterogeneous at the microscale, the random yet space-filling nature of the considered particles results
in a homogeneous response that is isotropic. Fig. E.21 shows the stress response of the RVEs for uniaxial loading in both 𝐸11 and
𝐸22. The figure has the same configuration as that shown in Fig. 5, but additionally illustrates the stress response for the symmetric
loading scenario (i.e., variation of both 𝐸11 and 𝐸22 separately, with all other strain components set to zero). Please note that we
plot both the (𝐸11, 𝑆11) and (𝐸22, 𝑆22) pairs on the same axes for ease of comparison.

Appendix F. Boundary value problem and homogenization of RVE

The visibility of a material’s configurational features depends on the scale at which it is inspected. At a larger macro scale,
the material may seem completely uniform or homogeneous, while at another finer micro scale, the material can reveal a complex
heterogeneous microstructure. Generally, these scales are considered distinct or separate when the contrast between them is sufficiently
high. In such cases, classical, first-order theories may be applied to describe the homogenized behavior observable from the
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Fig. D.18. Design obtained using the ML model with (a) fixed microstructure (𝛼 = 𝛼0 = 1∕3) and (b) Varying microstructure (𝛼 ∈ [0.1, 0.5]) for the cantilever
beam TO problem. (c) Difference plot between the designs obtained using the varying microstructure and the fixed microstructure, obtained by subtracting the
design field 𝜌 obtained for the fixed microstructure from that obtained for the varying microstructure.

Fig. D.19. Design obtained using the ML model with (a) fixed microstructure (𝛼 = 𝛼0 = 0.4) and (b) Varying microstructure (𝛼 ∈ [0.1, 0.5]) for the portal frame
TO problem. (c) Difference plot between the designs obtained using the varying microstructure and the fixed microstructure, obtained by subtracting the design
field 𝜌 obtained for the fixed microstructure from that obtained for the varying microstructure.

macroscale. When creating a Representative Volume Element of a composite material, there are two important aspects to consider:
(1) the material is usually assumed to have periodic microstructure, and (2) the RVE needs to be sufficiently large such that when
the microstructure is randomized, its response does not change. Simultaneously, if first-order homogenization is assumed, then the
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Fig. E.20. Stress response of the rule of mixtures model (E.1) compared to the ground truth obtained through RVE simulations for a uniaxial strain loading
cenario for (left) compressive loading, and (right) tension loading range. The top and bottom plots show the stress components 𝑆11 and 𝑆22 separately.

boundary value problem of the RVE is directly translated from the macroscopic strain at a point in the domain of the structure. If
ne defines the characteristic length of a representative volume element (RVE) at the microscale as 𝑙micr o and that of the macroscale
ontinuum as 𝑙macr o, the first-order homogenization theory assumes that 𝑙micr o ≪ 𝑙macr o. This means that the size of the RVE is

sufficiently small, and that the macroscale (structure) is separated from the microscale (RVE).
In this section, we briefly review the essential details of the homogenization step employed in the design of experiments for data

generation. Let 𝛺 represent the domain of the RVE and 𝜕 𝛺 the boundary of the RVE composed of the Dirichlet boundary (𝜕 𝛺𝒖) and
Neumann boundary (𝜕 𝛺𝒕 = 𝜕 𝛺 ⧵ 𝜕 𝛺𝒖). Then the macroscopic kinematics at any time instant may be imposed on the microscale by
defining a periodic RVE boundary value problem in terms of the macroscopic deformation gradient 𝑭 :

𝒖𝜇(𝒀 ) = (𝑭 (𝑿) − 𝟏)𝒀 + 𝒖̃𝜇(𝒀 ) = 𝒖lin𝜇 + 𝒖̃𝜇(𝒀 ) on 𝜕 𝛺𝑢 (F.1)

where 𝑿 and 𝒀 correspond to typical points in the reference configuration at the macroscale and microscale, respectively. Here,
𝒖̃𝜇(𝒀 ) corresponds to the microscopic displacement fluctuation term that is bound to a kinematically admissible space constrained by
the periodic boundary condition. Note that kinematic homogenization or volume averaging of the microscopic deformation gradient
𝑭 𝜇 enables us to transition from the microscale to the macroscale:

⟨𝑭 𝜇⟩ =
1
𝑉𝜇 ∫𝛺

𝑭 𝜇(𝒀 )d𝑉 = 𝑭 (F.2)

where 𝑉𝜇 denotes the RVE volume in the reference configuration. With these definitions in place, the solution to the boundary value
problem associated with the RVE can be obtained by solving the microscale equilibrium equation:

div[𝑷 𝜇(𝒀 )] = 𝟎 on 𝛺

𝑷 𝜇(𝒀 )𝒏(𝒀 ) − 𝒕𝜇(𝒀 ) = 𝟎 on 𝜕 𝛺𝑡
(F.3)

expressed in terms of the microscale first Piola–Kirchhoff stress 𝑷 𝜇 , subject to the boundary conditions in (F.1). From the Hill–Mandel
lemma it follows that:
⟨𝑷 𝜇 ∶𝑭 𝜇⟩ = ⟨𝑷 𝜇⟩∶ ⟨𝑭 𝜇⟩ = 𝑷 ∶𝑭 (F.4)
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Fig. E.21. Stress response of RVEs of varying volume fractions (𝛼 ∈ [0.1, 0.5]) for the uniaxial strain loading (variation of 𝐸11), plotted together with the stress
response corresponding to the symmetric loading (variation of 𝐸22). The labels in (⋅) correspond to the symmetric data. The prediction from the microstructure-
ependent consistent ML model closely matches the ground truth obtained through RVE simulations and the symmetric loading scenario.

which when read together with (F.2) gives us the relationship to obtain the macroscopic counterpart of the first Piola–Kirchhoff
tress

𝑷 = ⟨𝑷 𝜇⟩ =
1
𝑉𝜇 ∫𝛺

𝑷 𝜇(𝒀 ) d𝑉 = 1
𝑉𝜇 ∫𝜕 𝛺𝑡

𝒕𝜇 ⊗ 𝒀 d𝐴 (F.5)

Subsequently, the macroscopic second Piola–Kirchhoff stress 𝑺 may be obtained as

𝑺 = 𝑭 −1𝑷 (F.6)

Data availability

Data will be made available on request.

References

Allaire, G., Jouve, F., Toader, A.M., 2004. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (1), 363–393.
http://dx.doi.org/10.1016/j.jcp.2003.09.032.

Amos, B., Xu, L., Kolter, J.Z., 2017. Input convex neural networks. In: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference on Machine
Learning. In: Proceedings of Machine Learning Research, vol. 70, PMLR, pp. 146–155, URL https://proceedings.mlr.press/v70/amos17b.html.

Arruda, E.M., Boyce, M.C., 1993. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41 (2),
389–412. http://dx.doi.org/10.1016/0022-5096(93)90013-6.

As’ad, F., Avery, P., Farhat, C., 2022. A mechanics-informed artificial neural network approach in data-driven constitutive modeling. Internat. J. Numer. Methods
Engrg. 123 (12), 2738–2759. http://dx.doi.org/10.1002/nme.6957.
30 

http://dx.doi.org/10.1016/j.jcp.2003.09.032
https://proceedings.mlr.press/v70/amos17b.html
http://dx.doi.org/10.1016/0022-5096(93)90013-6
http://dx.doi.org/10.1002/nme.6957


H. Vijayakumaran et al. Journal of the Mechanics and Physics of Solids 196 (2025) 106015 
Avazmohammadi, R., Ponte Castañeda, P., 2016. Macroscopic constitutive relations for elastomers reinforced with short aligned fibers: Instabilities and
post-bifurcation response. J. Mech. Phys. Solids 97, 37–67. http://dx.doi.org/10.1016/j.jmps.2015.07.007.

Ball, J.M., 1976. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (4), 337–403. http://dx.doi.org/10.1007/
bf00279992.

Bendsøe, M.P., 1989. Optimal shape design as a material distribution problem. Struct. Optim. 1 (4), 193–202. http://dx.doi.org/10.1007/bf01650949.
Bendsøe, M.P., Kikuchi, N., 1988. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg. 71

(2), 197–224. http://dx.doi.org/10.1016/0045-7825(88)90086-2.
Bergstrom, J.S., 2015. Mechanics of Solid Polymers: Theory and Computational Modeling. Elsevier, http://dx.doi.org/10.1016/c2013-0-15493-1.
Bessa, M.A., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W.K., 2017. A framework for data-driven analysis of materials under

uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Engrg. 320, 633–667.
Bourdin, B., 2001. Filters in topology optimization. Internat. J. Numer. Methods Engrg. 50 (9), 2143–2158. http://dx.doi.org/10.1002/nme.116.
Boyd, S.P., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press.
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q., 2018.

JAX: composable transformations of python+numpy programs. URL http://github.com/google/jax.
Braides, A., 1994. Loss of polyconvexity by homogenization. Arch. Ration. Mech. Anal. 127 (2), 183–190. http://dx.doi.org/10.1007/bf00377660.
Chandrasekhar, A., Sridhara, S., Suresh, K., 2023. Graded multiscale topology optimization using neural networks. Adv. Eng. Softw. 175, 103359. http:

//dx.doi.org/10.1016/j.advengsoft.2022.103359.
Chen, Y., Shi, Y., Zhang, B., 2019. Optimal control via neural networks: A convex approach. In: International Conference on Learning Representations. URL

https://openreview.net/forum?id=H1MW72AcK7.
Chi, H., Zhang, Y., Tang, T.L.E., Mirabella, L., Dalloro, L., Song, L., Paulino, G.H., 2021. Universal machine learning for topology optimization. Comput. Methods

Appl. Mech. Engrg. 375, 112739. http://dx.doi.org/10.1016/j.cma.2019.112739.
Coleman, B.D., Noll, W., 1959. On the thermostatics of continuous media. Arch. Ration. Mech. Anal. 4 (1), 97–128. http://dx.doi.org/10.1007/bf00281381.
Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2 (4), 303–314. http://dx.doi.org/10.1007/

bf02551274.
da Silva, G.A., Beck, A.T., Sigmund, O., 2019. Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput. Methods Appl.

Mech. Engrg. 344, 512–537. http://dx.doi.org/10.1016/j.cma.2018.10.020.
DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C.,

Godwin, J., Jones, C., Hemsley, R., Hennigan, T., Hessel, M., Hou, S., Kapturowski, S., Keck, T., Kemaev, I., King, M., Kunesch, M., Martens, L., Merzic, H.,
Mikulik, V., Norman, T., Papamakarios, G., Quan, J., Ring, R., Ruiz, F., Sanchez, A., Sartran, L., Schneider, R., Sezener, E., Spencer, S., Srinivasan, S.,
Stanojević, M., Stokowiec, W., Wang, L., Zhou, G., Viola, F., 2020. The DeepMind JAX ecosystem. URL http://github.com/google-deepmind.

Feyel, F., 1999. Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput. Mater. Sci. 16 (1–4), 344–354.
Gaynor, A.T., Meisel, N.A., Williams, C.B., Guest, J.K., 2014. Multiple-material topology optimization of compliant mechanisms created via polyjet

three-dimensional printing. J. Manuf. Sci. Eng. 136 (6), http://dx.doi.org/10.1115/1.4028439.
Geers, M.G., Kouznetsova, V.G., Brekelmans, W., 2010. Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 234 (7),

2175–2182.
Ghaboussi, J., Garrett, J.H., Wu, X., 1991. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 117 (1), 132–153. http:

//dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132).
Groen, J.P., Sigmund, O., 2017. Homogenization-based topology optimization for high-resolution manufacturable microstructures. Internat. J. Numer. Methods

Engrg. 113 (8), 1148–1163. http://dx.doi.org/10.1002/nme.5575.
Groen, J.P., Stutz, F.C., Aage, N., Bærentzen, J.A., Sigmund, O., 2020. De-homogenization of optimal multi-scale 3D topologies. Comput. Methods Appl. Mech.

Engrg. 364, 112979. http://dx.doi.org/10.1016/j.cma.2020.112979.
Holzapfel, G.A., 2002. Nonlinear Solid Mechanics: a Continuum Approach for Engineering Science. Kluwer Academic Publishers Dordrecht.
Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2 (5), 359–366. http://dx.doi.org/10.

1016/0893-6080(89)90020-8.
Kalina, K.A., Gebhart, P., Brummund, J., Linden, L., Sun, W., Kästner, M., 2024. Neural network-based multiscale modeling of finite strain magneto-elasticity

with relaxed convexity criteria. Comput. Methods Appl. Mech. Engrg. 421, 116739. http://dx.doi.org/10.1016/j.cma.2023.116739.
Kalina, K.A., Linden, L., Brummund, J., Kästner, M., 2023. FE ANN: an efficient data-driven multiscale approach based on physics-constrained neural networks

and automated data mining. Comput. Mech. 71 (5), 827–851. http://dx.doi.org/10.1007/s00466-022-02260-0.
Kidger, P., Garcia, C., 2021. Equinox: neural networks in JAX via callable PyTrees and filtered transformations. In: Differentiable Programming workshop at

Neural Information Processing Systems 2021.
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. http://dx.doi.org/10.48550/arxiv.1412.6980, arXiv:1412.6980.
Klein, D.K., Fernández, M., Martin, R.J., Neff, P., Weeger, O., 2022. Polyconvex anisotropic hyperelasticity with neural networks. J. Mech. Phys. Solids 159,

104703. http://dx.doi.org/10.1016/j.jmps.2021.104703.
Leon, S.E., Lages, E.N., de Araújo, C.N., Paulino, G.H., 2014. On the effect of constraint parameters on the generalized displacement control method. Mech. Res.

Commun. 56, 123–129. http://dx.doi.org/10.1016/j.mechrescom.2013.12.009.
Linden, L., Klein, D.K., Kalina, K.A., Brummund, J., Weeger, O., Kästner, M., 2023. Neural networks meet hyperelasticity: A guide to enforcing physics. J. Mech.

Phys. Solids 179, 105363. http://dx.doi.org/10.1016/j.jmps.2023.105363.
Loshchilov, I., Hutter, F., 2019. Decoupled weight decay regularization. In: International Conference on Learning Representations. URL https://openreview.net/

forum?id=Bkg6RiCqY7.
Morrey, C.B., 1952. Quasi-convexity and the lower semicontinuity of multiple integrals.. Pacific J. Math. 2 (4), 25–53.
Morrey, C.B., 1966. Multiple Integrals in the Calculus of Variations. Springer, Berlin Heidelberg, http://dx.doi.org/10.1007/978-3-540-69952-1.
Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., 2019. Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116

(52), 26414–26420.
Pantz, O., Trabelsi, K., 2008. A post-treatment of the homogenization method for shape optimization. SIAM J. Control Optim. 47 (3), 1380–1398. http:

//dx.doi.org/10.1137/070688900.
Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning, vol. 2, (3), MIT press Cambridge, MA,
Sanders, E.D., Aguiló, M.A., Paulino, G.H., 2018a. Multi-material continuum topology optimization with arbitrary volume and mass constraints. Comput. Methods

Appl. Mech. Engrg. 340, 798–823. http://dx.doi.org/10.1016/j.cma.2018.01.032.
Sanders, E.D., Pereira, A., Aguiló, M.A., Paulino, G.H., 2018b. PolyMat: an efficient matlab code for multi-material topology optimization. Struct. Multidiscip.

Optim. 58 (6), 2727–2759. http://dx.doi.org/10.1007/s00158-018-2094-0.
Sanders, E.D., Pereira, A., Paulino, G.H., 2021. Optimal and continuous multilattice embedding. Sci. Adv. 7 (16), http://dx.doi.org/10.1126/sciadv.abf4838.
Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., Gross, M., 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34 (4),

1–13. http://dx.doi.org/10.1145/2766926.
31 

http://dx.doi.org/10.1016/j.jmps.2015.07.007
http://dx.doi.org/10.1007/bf00279992
http://dx.doi.org/10.1007/bf00279992
http://dx.doi.org/10.1007/bf00279992
http://dx.doi.org/10.1007/bf01650949
http://dx.doi.org/10.1016/0045-7825(88)90086-2
http://dx.doi.org/10.1016/c2013-0-15493-1
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb10
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb10
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb10
http://dx.doi.org/10.1002/nme.116
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb12
http://github.com/google/jax
http://dx.doi.org/10.1007/bf00377660
http://dx.doi.org/10.1016/j.advengsoft.2022.103359
http://dx.doi.org/10.1016/j.advengsoft.2022.103359
http://dx.doi.org/10.1016/j.advengsoft.2022.103359
https://openreview.net/forum?id=H1MW72AcK7
http://dx.doi.org/10.1016/j.cma.2019.112739
http://dx.doi.org/10.1007/bf00281381
http://dx.doi.org/10.1007/bf02551274
http://dx.doi.org/10.1007/bf02551274
http://dx.doi.org/10.1007/bf02551274
http://dx.doi.org/10.1016/j.cma.2018.10.020
http://github.com/google-deepmind
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb22
http://dx.doi.org/10.1115/1.4028439
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb24
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb24
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb24
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://dx.doi.org/10.1002/nme.5575
http://dx.doi.org/10.1016/j.cma.2020.112979
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb28
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/j.cma.2023.116739
http://dx.doi.org/10.1007/s00466-022-02260-0
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb32
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb32
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb32
http://dx.doi.org/10.48550/arxiv.1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1016/j.jmps.2021.104703
http://dx.doi.org/10.1016/j.mechrescom.2013.12.009
http://dx.doi.org/10.1016/j.jmps.2023.105363
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb38
http://dx.doi.org/10.1007/978-3-540-69952-1
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb40
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb40
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb40
http://dx.doi.org/10.1137/070688900
http://dx.doi.org/10.1137/070688900
http://dx.doi.org/10.1137/070688900
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb42
http://dx.doi.org/10.1016/j.cma.2018.01.032
http://dx.doi.org/10.1007/s00158-018-2094-0
http://dx.doi.org/10.1126/sciadv.abf4838
http://dx.doi.org/10.1145/2766926


H. Vijayakumaran et al. Journal of the Mechanics and Physics of Solids 196 (2025) 106015 
Shin, S., Shin, D., Kang, N., 2023. Topology optimization via machine learning and deep learning: a review. J. Comput. Des. Eng. 10 (4), 1736–1766.
http://dx.doi.org/10.1093/jcde/qwad072.

Simo, J.C., Miehe, C., 1992. Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comput. Methods Appl.
Mech. Engrg. 98 (1), 41–104. http://dx.doi.org/10.1016/0045-7825(92)90170-o.

Svanberg, K., 1987. The method of moving asymptotes—a new method for structural optimization. Internat. J. Numer. Methods Engrg. 24 (2), 359–373.
http://dx.doi.org/10.1002/nme.1620240207.

Systèmes, D., 2021. ABAQUS/Standard User’s Manual, Version 2021. Dassault Systèmes Simulia Corp, United States.
Treloar, L.R.G., 1944. Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59. http://dx.doi.org/10.1039/

tf9444000059.
Truby, R.L., Lewis, J.A., 2016. Printing soft matter in three dimensions. Nature 540 (7633), 371–378. http://dx.doi.org/10.1038/nature21003.
van der Schelling, M., Ferreira, B., Bessa, M., 2024. F3dasm: Framework for data-driven design and analysis of structures and materials. J. Open Source Soft. 9

(100), 6912.
Vatanabe, S.L., Lippi, T.N., Lima, C.R.d., Paulino, G.H., Silva, E.C., 2016. Topology optimization with manufacturing constraints: A unified projection-based

approach. Adv. Eng. Softw. 100, 97–112. http://dx.doi.org/10.1016/j.advengsoft.2016.07.002.
Wang, F., Lazarov, B.S., Sigmund, O., 2010. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim.

43 (6), 767–784. http://dx.doi.org/10.1007/s00158-010-0602-y.
Wang, F., Lazarov, B.S., Sigmund, O., Jensen, J.S., 2014. Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic

problems. Comput. Methods Appl. Mech. Engrg. 276, 453–472. http://dx.doi.org/10.1016/j.cma.2014.03.021.
White, D.A., Arrighi, W.J., Kudo, J., Watts, S.E., 2019. Multiscale topology optimization using neural network surrogate models. Comput. Methods Appl. Mech.

Engrg. 346, 1118–1135. http://dx.doi.org/10.1016/j.cma.2018.09.007.
Woldseth, R.V., Aage, N., Bærentzen, J.A., Sigmund, O., 2022. On the use of artificial neural networks in topology optimisation. Struct. Multidiscip. Optim. 65

(10), http://dx.doi.org/10.1007/s00158-022-03347-1.
Xia, L., Breitkopf, P., 2015. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput. Methods

Appl. Mech. Engrg. 286, 147–167. http://dx.doi.org/10.1016/j.cma.2014.12.018.
Xia, L., Breitkopf, P., 2016. Recent advances on topology optimization of multiscale nonlinear structures. Arch. Comput. Methods Eng. 24 (2), 227–249.

http://dx.doi.org/10.1007/s11831-016-9170-7.
Xu, W., Jambhulkar, S., Zhu, Y., Ravichandran, D., Kakarla, M., Vernon, B., Lott, D.G., Cornella, J.L., Shefi, O., Miquelard-Garnier, G., Yang, Y., Song, K., 2021.

3D printing for polymer/particle-based processing: A review. Composites B 223, 109102. http://dx.doi.org/10.1016/j.compositesb.2021.109102.
Yi, J., Bessa, M.A., 2023. Rvesimulator: An automated representative volume element simulator for data-driven material discovery. In: AI for Accelerated Materials

Design - NeurIPS 2023 Workshop. URL https://openreview.net/forum?id=511z1DGjPi.
Yvonnet, J., Monteiro, E., He, Q.C., 2013. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int. J.

Multiscale Comput. Eng. 11 (3), 201–225. http://dx.doi.org/10.1615/intjmultcompeng.2013005374.
Zhang, X.S., Chi, H., Paulino, G.H., 2020. Adaptive multi-material topology optimization with hyperelastic materials under large deformations: A virtual element

approach. Comput. Methods Appl. Mech. Engrg. 370, 112976. http://dx.doi.org/10.1016/j.cma.2020.112976.
Zhou, M., Rozvany, G.I.N., 1991. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Engrg.

89 (1–3), 309–336. http://dx.doi.org/10.1016/0045-7825(91)90046-9.
Zhu, C., Gemeda, H.B., Duoss, E.B., Spadaccini, C.M., 2024. Toward multiscale, multimaterial 3D printing. Adv. Mater. 36 (34), http://dx.doi.org/10.1002/adma.

202314204.
32 

http://dx.doi.org/10.1093/jcde/qwad072
http://dx.doi.org/10.1016/0045-7825(92)90170-o
http://dx.doi.org/10.1002/nme.1620240207
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb50
http://dx.doi.org/10.1039/tf9444000059
http://dx.doi.org/10.1039/tf9444000059
http://dx.doi.org/10.1039/tf9444000059
http://dx.doi.org/10.1038/nature21003
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb53
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb53
http://refhub.elsevier.com/S0022-5096(24)00481-2/sb53
http://dx.doi.org/10.1016/j.advengsoft.2016.07.002
http://dx.doi.org/10.1007/s00158-010-0602-y
http://dx.doi.org/10.1016/j.cma.2014.03.021
http://dx.doi.org/10.1016/j.cma.2018.09.007
http://dx.doi.org/10.1007/s00158-022-03347-1
http://dx.doi.org/10.1016/j.cma.2014.12.018
http://dx.doi.org/10.1007/s11831-016-9170-7
http://dx.doi.org/10.1016/j.compositesb.2021.109102
https://openreview.net/forum?id=511z1DGjPi
http://dx.doi.org/10.1615/intjmultcompeng.2013005374
http://dx.doi.org/10.1016/j.cma.2020.112976
http://dx.doi.org/10.1016/0045-7825(91)90046-9
http://dx.doi.org/10.1002/adma.202314204
http://dx.doi.org/10.1002/adma.202314204
http://dx.doi.org/10.1002/adma.202314204

	Consistent machine learning for topology optimization with microstructure-dependent neural network material models
	Introduction
	Macroscopic Constitutive Modeling of Hyperelastic Materials
	Hyperelasticity conditions
	Consistent machine learning for material modeling

	Topology Optimization Formulation
	Sensitivity analysis
	Numerical Experiments and Results
	Design of experiments for generating dataset for model calibration
	Model training
	Evaluation of model effectiveness
	Single-scale topology optimization
	Single-scale topology optimization: T-bracket example
	Single-scale topology optimization: Cantilever beam example

	Multi-scale topology optimization
	Multi-scale topology optimization: T-bracket example
	Multi-scale topology optimization: Cantilever beam example
	Multi-scale topology optimization: Discussion


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Modification to ICNN for modeling hyperelasticity
	Appendix A. Modification to ICNN for modeling hyperelasticity
	Limitations of invariant-based ICNN models
	Appendix B. Limitations of invariant-based ICNN models
	Derivation of the stress correction term for the isotropic hyperelastic neural network model
	Appendix C. Derivation of the stress correction term for the isotropic hyperelastic neural network model
	Additional topology optimization examples assessing ML material model
	Appendix D. Additional topology optimization examples assessing ML material model
	Single-scale topology optimization: Portal frame example
	Multi-scale topology optimization: Portal frame example
	Single-scale topology optimization: 3D Benchmark example with fixed–fixed beam
	Supplementary results for the multi-scale topology optimization problems

	Additional results concerning homogenized response of the representative volume elements
	Appendix E. Additional results concerning homogenized response of the representative volume elements
	Boundary value problem and Homogenization of RVE
	Appendix F. Boundary value problem and Homogenization of RVE
	Data availability
	Appendix . Data availability
	References


