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Abstract

We present PolyP1las, a Python implementation for a structural topology optimization framework considering von Mises plas-
ticity with unstructured polygonal finite element meshes. The modular structure of this code is inspired by PolyTop—an early
educational code for compliance minimization for linear elastic material. For the purpose of open-source access and extensibility,
PolyPlas is fully realized in Python. The nonlinear forward problem is solved via a Newton Raphson procedure with backtracking
line search for improved convergence stability. The path-dependent sensitivity analysis is conducted using the adjoint method and
a detailed discussion on the path-dependent algorithm and implementation of the sensitivity analysis is included herein. Finally,
several numerical examples are presented to illustrate the capabilities of PolyPlas in solving topology optimization problems
considering von Mises plasticity, resulting in structures with high energy absorption. PolyPlas is wholly intended for educational
purposes and to motivate further advancement in the field of topology optimization considering energy-dissipative phenomena.

Keywords Topology optimization - Elastoplasticity - Educational code - Open-source

1 Introduction

Since its inception in the work of Bendsge and Kikuchi
(1988), topology optimization has become a powerful engi-
neering design method to optimize placement of material to
extremize a specified design objective. Although the field is
extensive with many significant advancements, the majority
of the work in the literature is limited to linear or nonlin-
ear elasticity (Sigmund and Maute 2013). Nonetheless, there
have been several contributions investigating material inelas-
ticity in conjunction with topology optimization frameworks
that handle the history-dependent deformation and energy-
dissipative phenomenon during the design process. One of
the first efforts in considering elastoplasticity in structural
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optimization was done by Yuge and Kikuchi (1995), who pre-
sented a framework that computed the elastoplastic analysis
based on the homogenization method to inform the design of
a frame structure based on linear Timoshenko beam theory.
Later Maute et al. (1998) proposed a topology optimization
formulation to maximize structural ductility considering von
Mises material with linear, isotropic hardening; however, they
simplify the sensitivity analysis by neglecting some terms.
Additional work by Kato et al. (2015) proposed a framework
for the design of composite materials undergoing elastoplastic
deformation making some assumptions which simplify the
sensitivity analysis. Bogomolny and Amir (2012) approached
the design of steel-reinforced concrete structures by incorpo-
rating Drucker—Prager and von Mises yield criteria within the
topology optimization formulation. Their sensitivity analysis
was derived analytically using the adjoint method following
the framework established by Michaleris et al. (1994); Vidal
and Haber (1993), thus representing the first complete analyti-
cal derivation of the sensitivity analysis for topology optimi-
zation considering elastoplasticity. The adjoint method has
since become the standard approach in most of the topology
optimization frameworks that consider elastoplasticity and is
further elaborated upon in a unified framework for nonlinear
path-dependent sensitivity analysis by Alberdi et al. (2018).
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More recent works of elastoplastic topology optimization
frameworks have considered cyclical loading with kinematic
hardening (Li et al. 2017a) and anisotropic material behavior
(Zhang et al. 2017). Additional advancements to these elas-
toplastic frameworks include the consideration of failure cri-
teria. For example, Li et al. (2017b) presented a novel frame-
work to consider elastoplasticity coupled with the Lemaitre
damage model to account for local failure constraints during
the design. Other works that considered elastoplasticity with
failure criteria include the work by Alberdi and Khandelwal
(2017) wherein shear loading constraints are considered
in the optimization framework using an aggregation func-
tion. Kuci and Jansen (2022) later presented a framework
to consider elastoplastic materials that handle local stress
constraints in a level-set framework, adapting the formula-
tion presented by Senhora et al. (2020) via the Augmented
Lagrangian approach. In contrast, Amir (2017) proposed a
method to indirectly generate stress-constrained designs for
linear elastic structures without explicitly imposing stress con-
straints by utilizing the elastoplastic model subject to a sin-
gle global constraint on the accumulated plastic strain. In the
work by Russ and Waisman (2021) both local ductile failure
constraints and buckling are incorporated. Elastoplastic topol-
ogy optimization frameworks have also been developed to
design two-dimensional periodic materials with high energy
absorption as in the work by Alberdi and Khandelwal (2019)
where computational homogenization is used to characterize
the appropriate anisotropic plasticity behavior for the repre-
sentative unit cell, and in the work by Abueidda et al. (2021)
which informed the design of a three-dimensional periodic
elastoplastic architected material. Additional frameworks have
also been presented to approximate the elastoplastic material
behavior based on path-independent nonlinear elasticity (Zhao
et al. 2019, 2020) and on deformation plasticity (Li et al.
2024); thus significantly reducing the computational effort.
However, these models are strictly limited to proportional
loading and do not capture the dissipative physics. Several
works have also incorporated finite deformation kinematics
into elastoplastic topology optimization frameworks (Wallin
et al. 2016; Ivarsson et al. 2021; Han et al. 2024).

In addition to these developments in topology optimiza-
tion frameworks, there has been concurrent progress in the
broad dissemination of topology optimization via open-source,
educational programs (Wang et al. 2021), beginning with the
first contribution top 99 which introduced a 99-line Matlab
code for compliance minimization topology optimization for
linear elasticity (Sigmund 2001). Subsequent works included
Top3D, a 3D topology optimization program for compliance
minimization which incorporated additional implementation
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details for heat conduction and compliant mechanism problems
considering linear elasticity (Liu and Tovar 2014). Recently
there have also been extensions to speed-up and improve the
performance of these programs by means of vectorization and
array preallocation (Andreassen et al. 2011), parallel program-
ming (Aage et al. 2015) and other acceleration techniques (Fer-
rari and Sigmund 2020). Extensions to more complex physics
like linear buckling analysis (Ferrari et al. 2021) and homog-
enization theory (Xia and Breitkopf 2015) have also been
provided. The presented educational program in this work is
inspired by PolyTop, a compliance minimization framework
for linear elasticity considering unstructured polygonal ele-
ments (Talischi et al. 2012b). PolyTop ignited a series of
topology optimization programs including PolyTopFluid
which was developed to handle Stokes equation where the
polygonal elements were demonstrated to have improved sta-
bility for incompressible viscous flow using a low-order mixed
finite element formulation (Pereira et al. 2016). Later Poly—
Mat was presented to handle multiple linear elastic materials
(Sanders et al. 2018). Po1yTop3D included the extension to
3D topology optimization for compliance minimization using
the virtual element method approach (Chi et al. 2020). More
recently, PolyStress provided the extension to local stress
constraints in the topology optimization framework, also with
the option to include nonlinear elasticity (Giraldo-Londofio
and Paulino 2021b). Finally, PolyDyna extended the Poly—
Top suite to structural dynamics using an HHT-« time integra-
tion scheme (Giraldo-Londofio and Paulino 2021a).

The entirety of the aforementioned educational topology
optimization programs are limited to linear or nonlinear
elasticity. This work provides an original attempt at an
open-source, educational topology optimization framework
considering elastoplasticity. In this work, we present an
open-source code for topology optimization considering von
Mises elastoplasticity with a linear hardening rule. Here we
present two major contributions: (1) a thorough explana-
tion of the path-dependent sensitivity analysis for von Mises
plasticity together with a detailed discussion on the imple-
mentation of the history-dependent algorithm into the code
and (2) providing an open-source topology optimization
program that considers energy-dissipative phenomenon in
an extendable, modular framework. The program is imple-
mented in Python, making it accessible for academic and
industry users alike. With its modular structure, this frame-
work aims to promote further developments and extensions.

The remainder of the paper is organized as follows: Sect. 2
begins by describing the nonlinear finite element analysis.
In Sect. 3, the density-based topology optimization formu-
lation is described. Section 4 discusses the path-dependent
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sensitivity analysis in detail, followed by a discussion of
the organization of PolyPlas in Sect. 5. Finally, three
numerical examples are presented to demonstrate the capa-
bilities of the software in Sect. 6. Concluding remarks are
made in Sect. 7 with additional information provided in the
appendices.

2 Nonlinear finite element analysis
framework

Consistent with the former PolyTop literature, we begin
by describing the classical continuum topology optimization
problem within a general framework. The goal of topology
optimization is to optimize the shape of a structure, @ C R?
in d space dimensions where d = 2 in this work. This may
be mathematically expressed by:

inf  f(w,u)
wel (1)
st. gw,u)<0,i=1,.,K

where f'is the objective function to be minimized subject to
K number of constraints, g;. The symbol O represents the set
of admissible shapes for @w. Each evaluation of the objective
and constraint functions is dependent on the solution of the
boundary value problem, u. The strong form of the initial
boundary value problem for a solid body satisfying static
equilibrium in absence of body forces is shown below:

V.-6=0 in Q
u=it;, onfl,Crl )
u=0 onI,CrI

Here the shape w is within the closed domain © with bound-
ary I', o is the Cauchy stress tensor and V- is the divergence
operator. The Dirichlet boundary conditions are separated
into zero displacements imposed on the partition of the
boundary I';, € I' and nonzero prescribed displacements
imposed on T’y C T with I';, N T}, = @ (see Fig. 1).

The Cauchy stress tensor may be decomposed into volu-
metric and deviatoric components such that ¢ = pl +s
where p = %I : o is the pressure stress and s = Py, : o is
the deviatoric stress. Note that 7 is the second order identity
tensor and P4¢¥ = [¥ — %I ® 1 is the deviatoric projection ten-
sor constructed using the fourth order symmetric identity
tensor, 1Y, = 3 (838 + 6,8,

2.1 Weak form

The solution of the boundary value problem u €V
is determined via the finite element method begin-
ning with the weak form of the initial boundary value
problem where the space of admissible displacements

I'p

Fig.1 Design domain and boundary conditions of the solid body
[adapted from Talischi et al. (2012b)]

V={ueH (0,R?) :ulp, =0, ulr =i} We start by
writing the total potential energy as a three-field variational
principle in anticipation of employing the mean dilatation
formulation (Nagtegaal et al. 1974; Simo et al. 1985) to
avoid potential volumetric locking. The terms with the sub-
script (+),,; are associated with the pseudo-time from the
standard backward Euler time integration:

(#11,0p415Pis1) Z/Q [%KGIZ-H + Gy et +pi (Veug)|.
3
The independent field variables at the next time increment
include the displacement field u;, |, a volume-like field vari-
able ©,, |, and the pressure p,, ;. Here x represents the bulk
modulus, G represents the shear modulus, and efffv is the
deviatoric component of the elastic strain tensor,

edev _ mydev . p
€ < N O £i+1) “
with
€iy1 = Vsui+1 5)

representing the total strain tensor under the assumption of
small deformation. The Euler Lagrange equations associ-
ated with the minimization of this potential energy are then
expressed by

oI, = /Q (Sip1 1 Vou+p, V-6u)dV =0, YoueV,
(6)

51_[@[“ = /g;5®(l(®i+l —pi_H)dV =0, VéO®eW (7
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oIl = /QSP(V ‘U, —0,,)dV=0, VopeX (3)

where ou € V) = {u € H'(w, R?), 5u|fDUFD = 0} repre-

sents the virtual displacement, 60 € W = {@ e Lo, IR)}
represents the virtual dilatation, and
op e X= {p € L (o, R)} denotes the virtual pressure.

2.2 Finite element discretization

An approximate solution is then obtained using the Galerkin
finite element method in the usual manner, searching for
a solution in a finite dimensional subspace of the infinite
dimensional counterparts. The original domain is parti-
tioned into N,,,, non-overlapping elements which span the
discretized domain © C Q such that U} Q, = Q and satisfy
QNQ, =0Vk#¢.

A standard Lagrange finite element interpolation is used
for the displacement field approximation, u?, constructed
using piecewise linear shape functions defined over each ele-
ment, forming the basis for the underlying finite dimensional
subspace V, C V. The approximations for the dilatation
field, @ € W, C W, and pressure field p® € X, C X, are
interpolated in a piecewise constant manner over each finite
element, consistent with the mean dilatation formulation.
Following the Galerkin procedure, the virtual displacement,
virtual dilatation, and virtual pressure fields are interpolated
over each finite element using the same shape functions as
their non-virtual counterparts. The linear mapping from the
vector of nodal displacements, i, , to the displacement
approximation in a given finite element is represented via an
array of shape function values, N", evaluated at the relevant
spatial position. The corresponding gradient and divergence
of the displacement approximation is also constructed in a
similar manner via the arrays of shape function derivatives,
B" and B}, , respectively. That is,

ul ~ N'a,,,
VU & By, ©
V-ul ~ By
for the trial displacement solution, and

su ~ N"sit
Viou ~ B"sit (10)
V- su® ~ B, i
for the corresponding virtual displacements. Substituting the
finite element approximations into Eq. (6) and invoking the
standard procedure with the nodal virtual displacements, i,

we arrive at the global residual contribution from a single
element,
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Rf+1=/g B" :s,-JrldV+pl-+1/g-2 B dV. (11)

3 e

A similar process for Egs. (7) and (8) results in the expres-
sions for the constant dilatation and pressure interpolation
over each element. Namely,

e

1 ‘-
O = / B . dV (12)
Qﬂ

and

13

which may be substituted into Eq. (11), condensing the
dilatation and pressure degrees of freedom out of the global
system of equations. The element Jacobian matrix may then
be computed via

e

‘= ZI:L‘ = /Q (, B i Cl BV + § < /Q [ BZ;,dV) ( /K2 ( B;;h,dv>

(14)

with Cflﬁ representing the deviatoric component of the con-

sistent tangent tensor (Simo and Hughes 2006), provided

in Appendix A. The element residual vectors and Jacobian

matrices are assembled into their global counterparts via the
standard finite element assembly operations:

N,

elem
_ e
R. = AR

i+1°

N,

elem

Ji+1 = eﬁllJf'H (15)

The nonlinear system of equations is solved using the New-
ton Raphson method, updating the nodal displacement vec-
tor by

=m+l _ =m m~! pm
ay =g, —J R

(16)

where m represents the Newton iteration number. The itera-
tion continues until the relative £, norm of the global resid-
ual vector falls below a specified tolerance.

2.3 Elastoplastic constitutive model

In this subsection, we describe the main pieces of the clas-
sical von Mises plasticity model used in this work. Under
the assumption of small deformation, the total strain may
be additively decomposed into its elastic and plastic com-
ponents by,

e=¢"+¢. a7



PolyPlas:aPython implementation of a topology optimization framework for plasticity with...

Page50f30 153

The yield function depends only on the deviatoric stress
and the accumulated plastic strain, a. It is defined by the
following,

D(s, a) = \/%s 1s—o,(a) (18)

where the first term on the right corresponds to the von
Mises stress and o, («) is the current yield stress which may
evolve throughout the deformation history. Here we assume
a linear hardening rule,

oy (a) = o;) + Ha (19)

where H is the material hardening modulus and a;’ is the
initial value of the yield stress. The elastic response is
assumed to be linear and isotropic, with the deviatoric
stress related to the elastic strain in the classical manner,
s = 2GP% : (¢ — €”). In this setting the shear modulus
and bulk modulus may be defined in terms of the elastic
modulus E and Poisson’s ratio v by G = E/2(1 + v) and
k = E/3(1 — 2v), respectively.

An associative flow rule is assumed which governs the evo-
lution of the plastic strain,

3 s
& =yN=j1/>—
2 [Is]]

(20)
where 7 is the plastic multiplier and N = 0®/do governs
the direction of plastic flow. Additionally, the Karush-
Kuhn-Tucker (KKT) conditions ensure that the stress state
is admissible and that there is plastic flow only when the
stress is on the yield surface (Simo and Hughes 2006).

®<0, 720, 7@ =0. 1)

Finally, the consistency condition ensures that the stress state
persists on the yield surface in the event of plastic flow, pre-
cluding the possibility of a future inadmissible state, namely,

y = 0. (22)

Together, these equations form an initial value problem
that describes the evolution of the material’s internal state
over the given load path. The continuous problem is then
solved by discretizing the equations in pseudo-time using
a backward Euler scheme (de Souza Neto et al. 2011). This
leads to the fully implicit radial return mapping algorithm
in Appendix A for isotropic von Mises plasticity which is
simplified by coaxiality. The local residual equations in their
incremental form (i = 1,..., N,,,) are gathered into a vec-

tor, Hf", containing the expressions for the update of the
accumulated plastic strain, the plastic multiplier increment,
and the plastic strain. For elastic loading the local residual
equations correspond to,

. h;ql @ — o 0
H'=[h5|= Ay, =10 (23)
h,éq3 g:’ - 6?—1 0

and for plastic loading we obtain,

B @ =@ = Ay,
h.q
i1 3 . 0 ) 0
e é, —5. .8 — Ha.:
Hiq _ hi2 _ \/ 2s, S; (c)'y + Ha; —lol 4)
W 0

3 S;
2o - [T
oo 2 sl

The index g represents the quadrature point index corre-
sponding to element index e.

3 Topology optimization formulation

Here we present the basic topology optimization formula-
tion of PolyPlas, including a discussion on the material
interpolation, the density filter and projection scheme, and
the actual topology optimization statement (objective and
constraints). We remark that, in keeping with the Poly-
Plas philosophy, any of these expressions can be easily
changed within the modular structure of the code.

3.1 Material interpolation

Density-based topology optimization appoints the element
density in each finite element where p, = 0 corresponds to
void and p, = 1 to solid material. As stated, this problem
leads to an integer programming problem, often render-
ing the problem intractable. The continuous relaxation of
the material interpolation, p € [0, 1], enables the use of
gradient-based optimization, largely mitigating the antici-
pated intractably large computational expense. Using such
a continuous parameterization, the SIMP method, initially
proposed by Bendsge (1989), is used to interpolate the
relevant material properties, including

E,= (e, +(1—¢)p")E*" (25)
H,= (e, +(1—¢,)p")H"™ (26)
oy, = (6 + (1= €,)pf)o @7)

where the exponents p and g represent the elastic and plas-
tic penalization exponents, respectively, and the parameters
Esolid  prsolid and 68*“‘”“1 represent the elastic modulus, harden-
ing modulus, and initial yield stress of the solid material. The

@ Springer
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ersatz parameter is defined for the elastic material properties
by, ¢, = 107% and for the initial yield stress by, €, = 107
Although the material interpolation is scaling down the elas-
tic modulus in a physically consistent manner, the scaling of
yield stress will result in high values of accumulated plastic
strains in the intermediate density regions. In an attempt to
avoid numerical instabilities associated with this phenom-
enon, a separation of material interpolation schemes is per-
formed by setting the plastic material penalization exponent
smaller than the elastic exponents (Maute et al. 1998).

3.2 Density filter and projection schemes

Although continuous parametrization is used for the den-
sity variables in the design space A, this alone does not
address the issue of well-posedness of the problem nor
alleviate the potential checkerboard patterns (Talischi
et al. 2012b). Hence, regularity restrictions are introduced
in the design space by means of a linear polynomial filter-
ing scheme. In this work, we adopt nodal design variables
similar to Guest et al. (2004). A convex combination of
the design variables, z form the filtered field, p with a filter
radius, R. This linear mapping from the design variables to
their filtered counterparts may be expressed as

B z; co(xi,xj) p
P — — ..Z.
pl Zj w(xﬂxj) g=J (28)
where
llx; — x;lI
w(x;,x;) =max | 1 — —x 0 (29)

and the notation x; represents the coordinates of node i. The
filtered design variables are then mapped to each element
centroid using the element shape functions, after which the
filtered element densities are projected to produce the physi-
cal densities as discussed below.

Lastly, in order to partially mitigate the transition region
of intermediate densities that remain from the continuous
parametrization, the volume preserving Heaviside projection
scheme is imposed on the filtered densities (Xu et al. 2010;
Wang et al. 2011).

tanh(fn) + tanh(f(p, — 1))
tanh(fn) + tanh(f(1 — 5))

The g parameter governs the strength of the projection and
the n parameter governs the threshold at which the projec-
tion occurs. For example, herein, we set 7 = 0.5 and the ini-
tial # = min(1.0, 2R/7) where 7 is the largest edge length
in the finite element mesh. After the first 100 optimization
iterations, we apply a continuation scheme on the projection

p.(P.(2)) = (30)
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strength such that it increases in four equal increments for
each subsequent 25 optimization iterations until it reaches
the maximum projection strength g, = 2R/t at optimiza-
tion iteration 200; this is an adaptation of the approach by
da Silva et al. (2019).

3.3 Topology optimization statement
The design objective is to maximize the plastic work of a
structure undergoing a specified applied displacement sub-

ject to a volume constraint. The mathematical optimization
statement is:

max f(po. ). )= [ [ o

/ P dv — Vmax < 0
total J Q

R[(P(Z)7 u,u;,_,v;, v,'_1) =0,

&P dvdt

s.t. g(p(2) = 3D

i=1,...n

H(p(z)u;,,u,_,v;,v,_))=0, i=1,..n

As seen from Eq. (31), the optimization problem is also
subject to equilibrium constraints, ensuring that the struc-
ture satisfy both the global and local equilibrium at each
time step (i.e., R, =0and H; =0 fori =1, ...,n). Here we
introduce the vector of independent internal local variables,
denoted as v, where v; = {q;, Ay, elp }. Both residuals depend
on the set of internal variables, v; and the nodal displace-
ments, u;. Additionally, they also depend on the state from
the previous time step, v,_; and u,_,;, thereby introducing
the path dependency. The vector of design variables, z, is
controlled by the optimizer and is used to determine the
filtered and projected element densities, p(p(z)). The scalar
measure of plastic work is computed by integrating the con-
traction of the stress, o and the rate of plastic strain, &’ over
time and volume using the trapezoidal rule. This is achieved
numerically by,

1 1 Netew Nouad

. e, e . p.e, p.e ,

@, (). ) ~ 5 Y (of o) (e = e we
i=1l e=1 g=1

(32)
where e, notation refers to the quadrature point index g of
element index e and w* represents the Jacobian of the map-
ping multiplied by the corresponding quadrature weight. For
more information on the e, notation, see Sect. 4.1. Finally,
the volume constraint is bounded by the maximum volume
fraction, V, . where p is the vector of element densities and

> ' max

Vot 18 the total volume of the domain.
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4 Path-dependent sensitivity analysis

One of the most significant challenges when considering
elastoplasticity in topology optimization is the derivation
of the sensitivities due to the path-dependent nature of the
problem. Here, we adopt the adjoint method, which begins
by constructing a Lagrangian function composed of the
original function, f, and the inner products of the local and
global residuals, H; and R;, with their corresponding adjoint
vectors, 4; and y;,

Fo ) 9, = fp ) v D+ Y, (AT Ripotian g viwioy)
i=1 (33)

T
+u; Hy(p, "i»"i-l»"is‘ﬁ-ﬂ)

We denote Eq. (33) as the augmented function, £, for which
the value and derivative with respect to p are equivalent to
that of the original objective function,

df dv;

dai d_ Z of du;
0v,- dp

dp dp ou; dp

=
OR; du;
ou; dp

OR; du;_,
ou;_; dp

OR; dv;
oav; dp

- oR,
T i
24 (z*

i=1

N Z <aH
(34)

The adjoint vectors are selected to avoid the expensive com-
putation of the state derivatives, du;/dp and dv;/dp. This is
done by rearranging terms,

df of d ) oR oH
_f =_f + Un _f + AT_” + T n
dp dp dp " ou " du,

+ % i + )VTaR” +ﬂTaH"
dp "oy, "oy,

- oR. oH.
+ Al— +pl—
Z( op T H ap)

n—1
du; [ of L OH,
+de< l’au o (35)

OR, oH,;
+ AT | i+1 + ”T 1 i+1
i+ aui i+ ou.

n—1
dv; ( of 7OH;
D A

T aRi+1 T a}Ii+l
i+1 avi ”i+1 avi

oR; dv;_,
v,y dp

OH; du;
6u dp

oH, du,_,
ou;_; dp

OH, dv; O, dv,.,1>

oav; dp

v,y dp

where the adjoint vectors are computed such that they satisty
the following systems of equations, starting with the final
time stepi = n:

R oH,  of
Ar—n r—_—n _ _ 2
" ou, o ou,, ou,
n" time step : (36)
rOR, L OH, __Of

Fov, " ow, o,

and the remaining time steps,i = 1,...,n — L:

OR; oH; af OR oH,
/17'__'_” ( )f ar i+1 T x+l>

— + +
0u i+1 au ”!+l aui

i time step : OR dH 6f oH
T i T z+l i+1
A + h <0v /1’“ av; * K av; )

(37)
The solution of these system of equations can be compactly
described for i = 1, .., n by denoting the right hand side of
both Egs. (36) and (37) as F; and F} and rearranging the
terms,

oR, OR,0H ' oH.\' oH" OH"
ST )y R - L L (38)
ou; Jv; 0Ov; Ou,; ' ou; ov; !

i

oH;" [ OR]
Hi= =5 Fi== ov o (39)

Notice that the construction of the system of equations varies
depending on whether the analysis is at the final time step
or not. This implementation of this procedure for computing
the adjoint vectors is further described in Sect. 5.4.1.

Finally, after determining the adjoint vectors, we arrive at
the reduced form for the function sensitivity,

d_f af ( aR aH,.>
ap ;, r (40)

This leads to the following explicit partial derivatives that
must be obtained.

[ OR ( °H,

ap dp

of OR, oH,
ap 0_u, ou;
Forf : 1 I , forR; : < IR; , forH, : < oH,
ou,; ! ou;_, ! ou,;_,
9 OR, oH,
o, a_,,l v,

\ oR, oH,
[ i [ oviy

41)

Note that for the evaluation of the sensitivities with respect
to the design variables z, the chain rule must be applied to
the sensitivities computed with respect to the filtered and
projected design variables as shown below,

@ Springer
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Fig.2 Illustration of the ¢, definition and the quadrature triangulation
for the polygonal element

o _ 9 opop_ o op,

9z 9popoz  dpop 42)

4.1 Local residual derivatives

Here we start by introducing the implemented polygonal ele-
ment integration scheme. General irregular polygons do not
admit a standard quadrature rule. Therefore, here we adopt a
triangulation scheme with a single integration point per trian-
gle for all n-gons such that a quadrilateral element will have
four quadrature points. The quadrature triangulation scheme
is briefly illustrated in Fig. 2 along with the ¢, notation used in
the remainder of the article, i.e., e, where the quadrature point
index g = 1, ..., N4 for each element index e = 1, ..., Ny,
where N, varies depending on the polygonal element type
(e.g., triangles (3 vertices), quadrilaterals (4 vertices), penta-
gons (5 vertices), etc.).

The partial derivatives depend on the selection of the set
of independent internal variables, v; as further discussed by
Alberdi et al. (2018). In this work, the set of internal local
variables are defined by v? = {al.e", Ayf",ef’e"}, therefore
requiring the derivatives,

ofs _ laf% o afe ] ! @3)

v’ | oa’ oAy o€
at each quadrature point. We require the partial derivatives

with respect to the internal variables at both the current time
step,

oH? [oH oH" oH!]"
o' | aa’ aay 9 @)

and at the previous time step,
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For an elastic step, the partials of the local residual with
respect to the internal variables are shown below:

oH" |1 o™ |-1| om™ |0
L—fo|, ——=|o0 |, ——=|1],
da" |of 9’ o | 9Ar" |o
46
oH |0 om™ |0 om* 0 o
le =10 A _le =10 , _le = 0
by, o| o0& || oy |

The partial derivatives of the local residual with respect to the
density and nodal displacement variables in this case are zero:

oH"
op,

0 0 op [0
=10], =10], =10 (47)
0 0 0

e‘l
ou’,
For a step resulting in plastic flow, we arrive at the follow-
ing derivatives,

~1
oH’ Ul ol |21 oH 0
7 = —H N z = 0 P = s q )
oa;” 0 o, 0| 94y’ —\/g L
} 2 S
i 0
aHlEq 8 j‘l leq aHle(I 0
oAy, |o| o0& s/ 1| oery | e
: I+ AL

where we define the term A? by

6GA s s
A = u(ﬂ)dw - — > (49)

l e, e e,
[1s;"1 s 11 1ls; ]

The corresponding local residual derivatives with respect
to the density and nodal displacement variables are deter-
mined as,

0
e‘l 0 e‘l Eq e‘! 0
oH' oH' s oH'
L= |, — =|V66—— :B"|, —— =0
ape 0 duiq | Lsiq [ ()uizl 0
~AS" : B
(50)

with the value C; defined as
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4.2 Global residual derivatives

i=

The global residual equations are constructed from the ele-
ment level by,

14 MT .
Ri =/Q B" :s; dV+p[/ d” av (52)

‘e

where external traction loads and body forces have been
neglected. The expressions for the partial derivatives of
the global residual are shown below. Note that the global
residual equation is only dependent on the state variables
at the current time step and thus the partial derivatives
with respect to the state variables at the previous time step,
OR;/ou;_; = o0R;/0v,_; = 0. In addition, the global residual
is only dependent on the plastic strain component of the
local state variables leading to dR{/da; = oR;/dAy; = 0.
The nonzero partial derivatives are shown in the following
expressions,

OR!
l=/ ZaGBu u:udm(
Q

)dV+a 0, /B“ av

ape apt ape div
(33)
OR¢
i ul . dev. pu £ u u
- _/QU 2GB":P“":B" dV + V(/ Bdde)</Q Biav)
(54)
aRte / 2GBuT . Ipdev dv
R (55)

4.3 Plastic work derivatives
For the partial derivatives of the plastic work objective func-

tion we start by separating the terms affiliated with the final
time step, n and all other time steps,i = 1,...,n — L

£ (). 19, ) -—/ (=€ )av

/ g )dv

The partial derivative of the plastic work with respect to the
element densities is determined by,

a 1 os,,
o, 2Jaop,

(56)

n—1

.(n nldv+22/ape. i+1

l l)dv

&p))

where
0s; 0G d
[p ev . L z:.P .
o, = 2o, 0 i (e e (58)

Note that the pressure component of the stress is not
included in the partial derivatives due to the assumption that
the material is plastically incompressible where pI : €’ = 0.
The remaining partials of the plastic work, of /dv; and of / du,
required in Eqgs. (36) and (37) are separated into expres-
sions for the final time step, 7, and all previous time steps,
i=1,...,n— 1. For all time steps the plastic work does not
explicitly depend on the equivalent plastic strain, a;, or the
plastic multiplier, Ay;, leading to,

of _ of

0 37, 9

The remaining partial derivatives of the plastic work are
defined for the final time step, i = n, by,

af _1 dev . p 1/
3 = 2/9 2GR (g — & )dV + 5 A (8, +5,-1)aV
(60)

af 1 dev . . R
6_un=§/g‘)2GP D (€l - ) B'dV 61)

and for all previous time steps,i = 1,..,n — 1, by

af 1 ev . l
aei /Q—ZG[P’“’ . (ef+l - Ef_l)dV - 5 /Q (si+1 —S,—_l)dV
(62)

N

/Q 2GP™ : (¢, — € ) 1 B"aV. (63)

5 PolyPlas organization

Here we explain the PolyPlas organization with
special attention to its main modules. We discuss the
PolyPlasScript.py, the polygonal element implemen-
tation details, the elastoplastic forward analysis, and most
importantly the details involved for the implementation of the
path-dependent sensitivity analysis. Whenever appropriate,
we draw an analogy with the PolyTech family of educa-
tional software, including PolyTop (Talischi et al. (2012b)).

5.1 ThePolyPlasScript.py
As in PolyTop, we use a script file PolyPlasScript.

py to setup all the information necessary to create an
instance of the PolyPlas class and subsequently run the
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Table 1 Main Python files used in PolyPlas

File name Description
PolyPlasScript Script containing all the input information required to run a PolyPlas example
PolyPlas Main program that conducts the nonlinear forward analysis, sensitivity analysis and
runs the topology optimization problem
PolyPlasUtilities Produces PolyPlasPrecomputedData, currentPlasticState,
and MMA State objects
PolyMesher Generates polygonal finite element mesh for selected BoundaryValueProblem
PolyGeometryAndBCs Contains BoundaryValueProblem subclasses to define various domains and their
associated boundary conditions
PolyFilter Implementation of the polynomial filter and the identity filter (no filter)
PolyInterpolation Material interpolation class construction for RAMP and SIMP interpolation
PolyProjection Implementation of tanh Heaviside projection and identity projection

2. PolyMesher.py o

« Class to generate polygonal mesh for
the boundary value problem

» Generates mesh data: element
connectivity arrays, nodal coordinates,

3. PolyPlasUtilities.py

e Class PolyPlasPrecomputedData
which is used throughout PolyPlas.py

* Additional classes for the
currentPlasticState and the
MMA_optimizer_state dataclass

and boundary conditions

r?1. PolyGeometryAndBCs.py b r
* Defines domain geometry and
boundary conditions
» Optional attributes describing
passive regions indices and
regular grid element centroids

_)

PolyPlasScript.py

—

e Class for the Polynomial filter
+ *  Methods of building filter matrix,

PolyFilter.py h

rule of filter

~

applying filter, and apply chain

7. PolyPlas.py j

¢ Main class PolyPlas which
performs J2 return mapping, = S
conducts nonlinear forward c
analysis, and runs elastoplastic
topology optization problem J

r6. PolyInterpolation.py

Material interpolation class
Methods to obtain interpolated
value and the interpolation

function derivative J

5. PolyProjection. pﬂ

Class for Heaviside projection
Methods for applying
projection and apply chain
rule of projection

Fig. 3 Illustration of how files are integrated within PolyPlasScript.py in order to run the elastoplastic topology optimization problem

topology optimization problem. All of the files needed to
run the topology optimization problem are gathered with
their file names and brief descriptions shown in Table 1. In
addition, Fig. 3 describes each component in the sequence
they are utilized within PolyPlasScript.py. Note that
for the sake of clarity and good programming practice, all
file and variable names are intended to be self-explanatory.

The PolyPlasScript.py begins with a list of all
the available boundary value problems in PolyGeom-—
etryandBCs.py. The boundary value problems are
described by creating subclasses of the base class Bounda—
ryValueProblem which contains the abstract methods
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required to implement a new boundary value problem. For
each BoundaryValueProblem, the domain geometry,
boundary conditions, and applied displacement are specified.
Note that the program is restricted to a single applied dis-
placement region but the displacement direction may occur
in the x, y, or x and y direction. The attribute applied
displacement magnitude of the boundary value
problem is intended to allow for more user flexibility within
the PolyPlas.py script. A PolyMesher object is then
created in the PolyPlasScript.py using the selected
boundary value problem, number of elements, maximum
polymesher iterations and a boolean variable for the use
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of a regular grid; for more details on the polygonal mesh
generation refer to Talischi et al. (2012a).

A material property Dict is defined within the script
taking entries of the elastoplastic material properties by the
elastic modulus, Poisson’s ratio, hardening modulus, and the
initial yield stress, respectively. The PolyMesher object
along with the material parameters Dict is used to obtain
the precomputed data object of the class Poly-
PlasPrecomputedData from PolyPlasUtili-
ties.py which contains variables that are used repeatedly
and stay constant throughout PolyPlas, e.g., the hardening
modulus, the number of elements, the deviatoric projection
tensor, and so on. To view the complete list of variables con-
tained in the PolyPlasPrecomputedData, see lines
15—-65in PolyPlasUtilities.py.

Next, a design variable filter object is created, from the
PolynomialFilterclassin PolyFilter.py, which
allows for a relative filter radius to be used viaaboolean
input. If the variable is True, the filter radius is a multi-
ple of the largest element edge length, R, = R * 7 and
if False, R, =R per the standard procedure. Here
one can also specify the filter type, polynomial or iden-
tity (no filter), and may specify symmetry restrictions.
Following this, the projection function object is defined
by the polyprojection.get_projection_function()
method which takes the projection type (tanh or identity),
initial projection strength f#, and projection threshold # as
input. Afterward, the material interpolation schemes for
the elastic and plastic material parameters are defined,
where each is an instance of an interpolation class from
the PolyInterpolation.py file. The material interpola-
tion is created by specifying the type of material interpola-
tion (SIMP or RAMP), ersatz parameter, and penalization
parameter. Note that the penalization parameter is updated
during optimization via a continuation strategy present in
the get function values and gradients|()
method of PolyPlas.py. Such a continuation strategy

greatly improves numerical stability in the elastoplastic opti-
mization problem. Finally, the PolyPlas object is created in
the script file using the aforementioned variables as shown
on lines 90 — 100 of PolyPlasScript.py. To see a
complete list of all input variables and their corresponding
types, see the summary in Table 2.

Before running the topology optimization problem, the
MMA_state object is created as an instance of the MMA
Optimizer state class in lines 122 — 185 in the
PolyPlasUtilities.py file. This object stores all relevant
information needed in updating the design variables using
the well-known Method of Moving Asymptotes (MMA)
optimizer (Svanberg 1987). Finally, the run_top opt
problem () method from PolyPlas.py is called in the
script followed by methods plot density field() and
plot optimization history ().The implementa-
tion details involved in solving the topology optimization
problem in PolyPlas are described in detail in the follow-
ing sections.

5.2 Polygonal element implementation details

The generation of the polygonal finite element information is
conducted in PolyPlasUtilities.py which contains
functions pertaining to the triangulation of the polygons in
get polygonal triangulation (), gathering of
the quadrature point information in get _polygonal
element quadrature (), and functions on obtaining
the shape function value and gradient information, as shown
in lines 239 — 360. The procedure for obtaining the polygo-
nal finite element information follows the standard approach
as outlined in Talischi et al. (2012a).

An important feature to notice when considering polygo-
nal finite elements in the PolyPlas program is the loop-
ing over the polygonal element types and the creation of
dictionaries with keys pertaining to the number of vertices
in each polygonal element type. This is necessary for the

Table 2 List of inputs in
PolyPlas class

Variable name

design_variable_filter

elastic_material_interpolation
plastic_material_interpolation

projection

maximum_projection_strength

precomputed_data

volume_fraction_upper_bound

number_of_time_steps
directory_name

Instance of FilterBase class

Instance of MaterialInterpolationFuction class
Instance of MaterialInterpolationFuction class
Instance of ProjectionBase class

Maximum projection strength

Instance of PolyPlasPrecomputedData class

Vnax from Eq. (31), type: float

Number of pseudo-time steps for forward analysis, type: int
Directory name for storing output data, type: string
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computations due to the dimensions affiliated with the ele-
ment degrees of freedom varying per polygonal element
type. An example of this is demonstrated in the code snip-
pet below in which the plastic work objective function is
updated within the method run_forward analysis|()
in PolyPlas.py lines 442 — 458 at the current time step.

To use these functions the user simply has to call the func-
tionget shape function table and quadra-
ture weights quad element type () as shown
in line 673. Additionally, the user has to ensure that the
mesh is composed of a structured grid by setting the vari-
able, use regular grid if implemented=True,

# Computing the update of the plastic work objective function value
for number_of_vertices in unique_number_of_vertices:

deviatoric_stress_tensor_sum = \

self.state.current_deviatoric_stress_tensors[number_of_vertices] + \
self.state.previous_deviatoric_stress_tensors[number_of_vertices]

plastic_strain_difference = \

self.state.current_plastic_strain_tensors[number_of_vertices] - \
self.state.previous_plastic_strain_tensors[number_of_vertices]

JxW = self.precomputed_data.jacobian_determinant_x_quadrature_weights \

[number_of_vertices]

objective_function_value += oe.contract ("...

Here each entry in the array unique number of
vertices corresponds to the number of vertices in each of
the unique element types. The objective function is updated
numerically following Eq. (32). The relevant information
from the state variable pertaining to the current time step
is used in computing the deviatoric stress_ ten-
sor valueandtheplastic strain difference.
These variables are then used in the function oe.con-
tract which performs the tensor contraction operation
using conventional Einstein notation. Further information
on how to use the oe . contract function can be found in
the tutorial outlined in Appendix C.

5.2.1 Standard bilinear quadrilateral element
implementation

If this user instead desires to use standard bilinear quadrilat-
eral (Q4) elements in their analysis, they can do so by utiliz-
ing the functions we have implemented in the PolyPlas-
Utilities.py file. These functions include the standard
approach in obtaining the quadrature point information and
the respective shape function values and gradients as can
be seen in PolyPlasUtilities.py lines 364 —436.
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,eqij,eqij,eq->",

-0.5,
deviatoric_stress_tensor_sum,
plastic_strain_difference,
JxW)

when initializing the PolyMesher object in the Poly-
PlasScript.py. Note that the regular grid can only be
imposed on rectangular-type domains; this highlights the
benefits of using polygonal finite elements which can mesh
arbitrary, curved domains.

5.3 Elastoplastic forward analysis

The elastoplastic forward analysis needs to be performed at
every optimization iteration which is why topology optimiza-
tion with elastoplasticity can be a very computationally expen-
sive task. As mentioned previously, the equations are solved
incrementally using a fully implicit pseudo-time integration
scheme and, within each increment, the nodal displacements
are updated using a global Newton Raphson iteration. Both the
time integration and Newton iteration loops are located in the
run_ forward analysis () method within PolyPlas.
py on lines 372 — 414. The update of the global and local state
variables is performed using the method, update state ().
To do this the method update state () calls other Poly-
Plas methods get element quantities () and
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get J2 update ().The method get element quan-
tities () isused to compute the element level contributions
to the global residual vector and the tangent stiffness matrix.
The return mapping procedure outlined in Appendix A takes
place in get J2 update () and the supplied total
strain_ tensors are computed under the assumption of
plane strain. Note that all stress and strain tensors in Poly-
Plas are stored as 3x3 matrices, enabling easier extension to
three-dimensional problems. The element residual and element
Jacobian matrices are then computed in a loop over each ele-

The element residual and Jacobian information is used
to assemble the global system of equations and to deter-
mine the update of the nodal displacement vector. The
global Newton Raphson iteration continues until the rela-
tive residual norm is less than the specified tolerance,
IR, || = ||R’”||/||RO|| < tolyg, as shown in the method
run_forward analysis (). Within the Newton
Raphson scheme, a backtracking line search procedure is
conducted for improved convergence stability in the non-

linear forward analysis. Once the global equilibrium equa-

ment type, beginning with the Jacobian matrices as shown in
Eq. (14),

tions have converged for the given time step, the state

element_jacobian_matrices = oe.contract("eqmij,eqijkl,eqnkl->emn",
virtual_displacement_symmetric_gradients,
constitutive_tensors[number_of_vertices],
virtual_displacement_symmetric_gradients,
jacobian_determinant_x_quadrature_weights)

element_jacobian_matrices += oe.contract("...
bulk_modulus,
elastic_interpolation_per_element /
element_volumes_per_elem_type,
virtual_displacement_volume_weighted_divergence,
virtual_displacement_volume_weighted_divergence)

,e,em,en->emn",

Similarly the element residual vectors are computed following Eq. (11) by,

element_residual_vectors = oe.contract("eqmij,eqij,eq->em",
virtual_displacement_symmetric_gradients,
current_deviatoric_stress_tensors,
jacobian_determinant_x_quadrature_weights)

element_residual_vectors += oe.contract("e,em->em",
pressure,
virtual_displacement_volume_weighted_divergence)
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object is saved, storing all relevant physical data for that
time index. The state object is an instance of the class
currentPlasticState, to view all the variables
stored within state see lines inthe PolyPlasUtil-
ities.py file. The state was initialized and stored
within the PolyPlas object by the get initial
plastic_state () function from PolyPlasUtil-
ities.py lines 898 —932. Storing the state data at
each time step is crucial in computing the path-dependent

sensitivity analysis which is further elaborated upon in
Sect. 5.4.1. Subsequently after saving the state, the
method transfer state () of the class current-
PlasticState is called to store the current state varia-
ble values (-); in the entries named with “previous" (+),_;, in
preparation for the next time increment. For more details
on the nonlinear finite element routine, including the
global Newton iteration with line search, see Algorithm 1.

Algorithm 1 Global equilibrium iteration with inexact line search

1: Initialize the objective function value, f =0

2: fori=1tondo

3 Set current applied displacement for time step index 4

4 Initialize newton iteration index m = 1

5: Initialize the nodal displacement vector ug = 0

6 while HRZ;IH > tolyg do

7 Call update_state to obtain nodal displacement update Au™ and current residual norm, || R™ |
8 if m =1 then

9 Set ||R?|| = max (1.0, ||R™]|)

10: end if

11: if m >1 then

12: Set line search step size o' = 0.8

13: for K =1to K do

14: Update u!™ =u{™"" + o*Au(™ and compute residual norm || R™ |
15: if |[R™| < |[R™ Y| then

16: end line search

17: end if

18: Set aft!l = aF . ok

19: end for
20: end if
21: Compute relative residual norm ||R™,| = || R™]/| R°|
22: Increase newton iteration index, m = m + 1
23: end while
24: Update the objective function via Equation (32)
25: Save the converged state for current time step index, ¢
26: Transfer state data from current to previous for next time step, ¢ + 1

27: end for
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Fig.4 The local residual derivative with respect to the local internal variables for a single quadrature point in the elastic region (left) and in the

plastic region (right)

5.4 Sensitivity analysis implementation

This section places strong emphasis on the algorithm used in
conducting the path-dependent sensitivity analysis (begin-
ning with the final time step and working backward) along
with a thorough explanation on the procedure involved in
carrying out the partial derivatives of the local residual

vector. These details are crucial for the implementation of
topology optimization considering path-dependent physics.

5.4.1 Path-dependent procedure

The path-dependent sensitivity analysis is computed by call-
ing the compute_objective_function_sensitivity()
method in PolyPlas. Here the procedure begins by load-
ing the state at the final time step n by:

self.state = self.states[total_number_of_time_steps - 1].
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Fig.5 Flowchart of topology optimization procedure

Table 3 Material parameters of Aluminum 2024-T351

E [MPa] v oy [MPa] H [MPa]

74633.0 0.3 344.0 2000.0

This returns the state from the final time step i = n,
which is used to assemble and solve the system of equa-
tions in (38) and (39). The procedure begins at the final
time step since the adjoint vectors at the current time step,
A; and y;, are dependent on the adjoint vectors at the next
time step, 4;,{and y;, ;, as observed in Eq. (37). The system
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Fig.6 Portal frame domain and boundary conditions

of adjoint equations is formed and solved in the method
compute_sensitivity_contribution(). Within this
function the required partial derivatives of the local resid-
ual, global residual, and plastic work objective function
are computed. The local residual derivatives in the method
compute_local_residual_sensitivity_per_elem_type() are
discussed in more detail in the following section. The
compute_sensitivity_contribution()function updates
the objective function sensitivity after determining the /ll.T
and uiT adjoint vectors and returns the components of the
updated Fi‘l and F ;‘1 terms associated with the 0H,/dv,_,
and 0H,;/ou;_, derivatives. This method is then called again
in a for loop for the remaining time steps,i =n—1,..., 1,
until the final update of the analytical expression for the
augmented objective function sensitivity from Eq. (40) is
complete. For further information on the procedure, see
Algorithm 2. The final step for obtaining the complete
sensitivity with respect to the design variables, df /0z is
to apply the chain rule as shown in Eq. (42). To observe
the verification of the implemented sensitivity analysis in
PolyPlas, see Appendix B.
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Fig.7 Portal frame results featuring: the optimized topology (top- points on the yield surface (bottom-left), and the von Mises stress dis-
left), the accumulated plastic strain distribution in the optimized tribution of the optimized structure (bottom-right)
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Fig.8 Portal frame a objective function convergence history; b penalization and projection schemes information; ¢ forward analysis reaction
force versus absolute applied displacement of the final optimized structure

Uy = —1.0 mm uy = —1.5 mm

Optimized topology

Fig. 9 The optimized topologies of the Portal frame for three cases of applied displacement: #, = —0.5 mm (left), #, = —1.0 mm (middle), and
u, = —1.5mm (right)
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Algorithm 2

Procedure for path-dependent sensitivity analysis

Load state at final time step, n

Construct F' and F.! per Equation (36)

Compute and store F"~! and F~
fori=n—1to1do
Load state at current time step, ¢

© % 3> T KWy

e e
Ll

. end for

=
ot

Start by initializing the objective function derivative d f /dp =0
Compute partial derivatives needed to assemble the system in Equation (36)

Solve Equations (38) and (39) for A, and u,
Update the df /dp derivative via Equation (40)
! containing OH,,/0v,,_1 and OH,, /0w, 1

Compute partial derivatives needed to assemble the system in Equation (37)
Construct F! and F! per Equation (37) using the previously stored terms
Solve Equations (38) and (39) for A; and p;

Update the df/dp derivative via Equation (40)

Compute and store F!~! and F!~! containing 0H;/0v;_1 and OH;/0u; 1

5.4.2 Local residual derivatives

Here we present a description of the local residual partial
derivatives in the PolyPlas program, primarily focusing
on the implementation of the local residual partial derivative
with respect to the current internal local variables,
0Hf" / av?. While the explicit expressions for the local resid-
ual derivatives were shown in Sect. 4.1, here we demonstrate
how the partial derivatives were organized and implemented.
The local residual derivative is stored as a higher

Fig. 10 Corbel domain and boundary conditions
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local local
dof dof

q represents the total number of quadrature points per ele-
ment type and nl"‘”l represents the total number of local

dimensional array with dimensions of (g, n ) where

degrees of freedom (i.e., the internal local variables:

ae, Ay £Xx”, eif ‘“ eﬁ;g ‘“ eff”). The layout of the local resid-
ual derivative with respect to the local variables for a single
quadrature point is shown for both the elastic and plastic step
in Fig. 4. Note that the e, terms in the superscripts of the
partials are omitted for conciseness.

One can interpret this implementation as the rows cor-
responding to the update rules of the internal local variables
and the columns corresponding to the internal local variable
of differentiation. The definition of the update laws is shown
in Eqgs. (23) and (24) where the update of the accumulated
plastic strain a; corresponds to %; ;, the update of the plastic
multiplier Ay; partially governed by the yield function in
h;,, and the update of the plastic strain e” corresponding
to the flow rule by #; ;. Here the superscripts of the flow
rule h’ , correspond to the jk"™ component of the tensor. We
also denote | = €y, £, =€), €, =&, €, = ¢ This
derivative is computed in the method compute local
residual sensitivity per elem type (), on
lines 1135 — 1384. The procedure begins by creating an
array containing all quadrature point indices undergoing
elastic loading denoted by elastic indices which are
then used to compute the 1ocal residual deriva-
tive wrt current local variables per
elem_ type values using the partial derivative expres-
sions formerly derived in Eqs. (46). For the fourth order
tensor of the partial, ()hi,3 / def = ["™_ the first two indices
correspond to the components of the local residual equa-
tion and the last two indices represent the plastic strain
tensor component. The implementation of this is shown
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Optimized topology Accumulated plastic strain von Mises stress [MPa]

(b)

Fig. 11 Results of the Corbel structure showcasing the optimized
topology and the distribution of the accumulated plastic strain and
the von Mises stress for three different combinations of applied dis-
placements: a an applied displacement of #, = 1.0 mm with a final
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plastic work of W” = 1587.46 N-mm, b an applied displacement of
it, = —1.0 mm with a final plastic work of W” = 431.37 N-mm, and
¢ an applied displacement of &, = 0.05 mm and i, = —1.0 mm with a
final plastic work of W” = 463.86 N-mm
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(b)

(©)

Fig. 12 Deviatoric plane next to the corresponding Corbel structure containing a 4,361 quadrature points on the yield surface, b 6,893 quadra-
ture points on the yield surface, and ¢ 6,796 quadrature points on the yield surface, out of a total of 148,083 quadrature points
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Fig. 13 Corbel optimization details including the convergence plots with their corresponding structures in parts a—c and d the material penaliza-

tion parameters and projection strength histories
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Fig. 14 Geometries and boundary conditions of the curved domains: a the Serpentine domain and b the Curved beam

Optimized topology 0.04

0.03
(b)

0.02

0.01

0

Accumulated plastic strain
400

300

200

100

von Mises stress [MPa]

Fig. 15 Results of the Serpentine domain (left) and Curved beam (right) with a illustrating the optimized topology, b the distribution of the
accumulated plastic strain and (c) the distribution of the von Mises stress
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on lines 1208 — 1230. The remaining partial derivatives,
oh;,/da; = oh;,/0Ay; = 1.0 are inserted into the local
residual derivative wrt current local
variables per elem type tensor to resemble the
left matrix in Fig. 4.

For the quadrature points undergoing plastic flow, which
we index by plastic_indices, the computation
requires additional implementation steps using the oe.
contract method. An example of this is shown in the
computation of the flow rule derivative with respect to the
plastic multiplier, 0h, 3 /0Ay;.

flow_rule_derivative_wrt_plastic_multiplier
-(3.0/2.0)**0.5,

test polyplas.py which perform individual finite
difference checks on each explicit partial derivative to help
ensure accuracy. These unit tests played a significant role in
the development of the complete sensitivity analysis and a
similar protocol is advised for one who aims to extend this
framework.

5.5 Topology optimization procedure overview

Here, flowchart 5 is presented to guide the reader through
all the pieces involved in the topology optimization

oe.contract("...,q,qij->qij",

1.0/uninterpolated_deviatoric_stress_norms
[plastic_indices],
uninterpolated_deviatoric_stress_tensor
[plastic_indices])

Once this is computed, the components of this ten-
sor are inserted into their corresponding locations in the
local residual derivative wrt current
local variables per elem type array, see lines
1332 — 1335in PolyPlas.py for reference. The remain-
ing partial derivatives are computed and stored similarly,
along with the derivative of the local residual with respect
to the previous local variables 0H;/dv,_;. The remaining
derivatives 0H,/ou;, 0H,/ou;_,, and 0H,/dp, are computed
and stored in a similar manner as well, corresponding to
Eqgs. (47) and (50).

The correct implementation of the path-dependent sen-
sitivity analysis is a nontrivial task. In addition to the finite
difference checker of the objective function and volume
function derivatives with respect to the design variables in
the PolyPlas method finite difference sensi-
tivity checker (), there exist multiple unit tests in

procedure considering elastoplasticity. The main method,
run_top_opt_problem(), drives the solutions of the topol-
ogy optimization problem. This method takes the MMA_state,
the maximum number of optimization iterations, the conver-
gence tolerance, and the check_grad boolean variable as
input. Within this method the design variables z are filtered
and projected to obtain p which are the physical density vari-
ables used in the elastoplastic forward analysis. The method
get_function_values_and_gradients()calls methods to
run the elastoplastic forward analysis, obtain the plastic work
objective function, and obtain the sensitivity information for
both the objective function, ()f” /0z and the volume constraint,
0g/0z. Although in this framework the plastic work objective
function is chosen, the design of PolyP1las is highly modu-
lar, allowing for easy extension to other objective functions.
Within this method, the appropriate material interpolation and
projection scheme parameters are updated in a continuation
scheme. Back in the run_top_opt_problem() method, the

| | |
[S] — = |
=] ol =] o o

Objective Function Value
b
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|
w
=]

10 1 === Tanh Heaviside Projection Strengt]
= = SIMP Elastic Penalization
= = SIMP Plastic Penalization
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Optimization Iteration Number

Optimization Iteration Number

150 200 250 0 50 100 150 200 250
Optimization Iteration Number

Fig. 16 Optimization details of the curved domains with the objective function convergence for the Serpentine domain (left) and for the Curved
beam (middle), with their corresponding projection strengths and material penalization parameters (right)
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02

o 01

3 :

N>
Fig. 17 Deviatoric planes for the curved domains; a the Curved beam
with 767 quadrature points on the yield surface from a total of 94,650

and b the Serpentine domain with 2, 131 quadrature points on the
yield surface from a total of 94,628

objective function is scaled using the absolute value of the
objective function at the first optimization iteration, while
the volume constraint is scaled based the magnitude of the
bound, both of which help to ensure optimal performance of
the MMA algorithm. Next the perform_design update()
method updates the design variables using an adaptation of the
MMA implementation by Deetman (2024) (a Python imple-
mentation of the original Matlab MMA code by Svanberg
(1987)). The iteration continues until either the maximum
number of optimization iterations has been reached or the L
norm of the design variable update is less than the specified
tolerance (see Fig. 5).

6 Numerical examples

The numerical results presented in this section are intended
to showcase the capabilities of the PolyPlas program
and highlight a few key features. A summary of the example
domains and problem setup information is provided in Appen-
dix D. Note that for all examples we employ a continuation
strategy on both the elastic and plastic penalization parameters
to help alleviate numerical issues associated with large plas-
tic strains in low-density regions. We begin with exponents
p =1, g =0.5 and increase their values by 0.5 after every
25 optimization iterations until they reach p =4, g =3.5at
Jj =T5. After the continuation on the material interpolation,
a continuation scheme is imposed on the projection strength
as well, see Sect. 3.2 for details. The material parameters are
the same across all examples and are set to closely align with
the material properties calibrated for Aluminum 2024-T351
(Bao and Wierzbicki 2004), see Table 3. The optimization
problem is updated using the Method of Moving Asymptotes
with a move limit of 0.5. To help prevent divergence, the
applied displacement is slowly increased such that the first
few increments correspond to primarily elastic loading before
transitioning into plastic deformation. Such an approach is

3 mm

(a)

1 mm

\\\W77AN\W7AN\\ ‘
A

(®)

Fig. 18 Illustration of the cantilever beam used in the sensitivity anal-
ysis verification with a dimensions and boundary conditions and b
the random density distribution

recommended for all examples to help ensure the convergence
of the elastoplastic forward analysis during the optimization
process. Further information regarding the problem setup can
be found in each problem’s description below.

6.1 Portal frame

This first example analyzes the portal frame which is a typical
benchmark problem found in the elastoplastic topology opti-
mization literature. The portal frame domain and boundary
conditions are illustrated in Fig. 6 where the dimensions are
setby L = 60mm, a = 12.5mm, b = 17.5mm, ¢ = 2.75 mm,
and d = 4 mm. Half of the domain is analyzed for computa-
tional efficiency using the Hal fPortalFrame boundary
value problem with a finite element mesh composed of 20,500
polygonal elements. The polynomial filter is used with a filter
radius of R = 1.0 mm and the volume fraction upper bound
issettoV,,,, = 0.4. The forward problem is run with 14 time
steps for a final total applied displacement of #, = —1.0 mm.
The optimization parameters include a maximum number of
iterations of 300, and a convergence tolerance of tol = 1078,
Maximizing plastic work leads to energy absorbing elas-
toplastic structures as illustrated in Fig. 7. It is observed
that the structure undergoes a significant amount of plastic
strain where a high concentration of the accumulated plastic
strain forms between the applied displacement region and
the re-entrant corner of the frame, in addition to the region
around the supports. Regions of high von Mises stress cor-
respond to the regions of high accumulated plastic strain, as
consistent with the von Mises yield criteria. The normalized
deviatoric plane is shown illustrating the 12,464 quadrature
points that are on the yield surface where ~ 10.26% of all
quadrature points are undergoing plastic flow. The final plas-
tic work of the structure is W? = 276.96 N-mm. Addition-
ally, the unscaled objective function convergence history is
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Fig. 19 Comparison of the numerical and analytical sensitivities for a the

with the corresponding percent difference

shown in Fig. 8a where the spikes in the convergence corre-
spond to the parameter updates in the continuation scheme,
shown in Fig. 8b. Lastly, we show the forward analysis of the
final optimized topology plotting the reaction force versus
the applied displacement in Fig. 8c, where we observe the
transition from a predominantly elastic response to a plastic
response.

6.1.1 Applied displacement magnitude review

To examine the affect of the applied displacement magni-
tude on the elastoplastic topology optimization problem, we
examine two additional applied displacement cases for the
Portal frame: u, = —0.5 mm over 7 pseudo-time steps and
u, = —1.5 mm over 21 pseudo-time steps. The time steps are
defined such that all cases have the same applied displace-
ment increment size. The examples have the same problem
setup information as indicated in the previous Portal frame
result. The final topologies, including the original example
from Sect. 6.1, are shown in Fig. 9. From these results, we
observe how even a slight change in the applied displace-
ment leads to drastically different final designs. The plastic
work objectives are reported as W? = 65.74 N-mm for the
case of u, = —0.5 mm, WP =276.96 N-mm for u, = -1.0
mm (from the previous example), and W? = 613.71 N-mm
for the final case of u, = —1.5 mm.

6.2 Corbel structure
Here, the Corbel structure is optimized for three different

applied displacement combinations. The Corbel has a side
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objective function (i.e., plastic work) and b the volume fraction along

length, L = 40 mm and an applied displacement region
width of d = 3.2 mm with boundary conditions shown in
Fig. 10. The finite element mesh is composed of 25,000
unstructured polygonal elements and contains a passive
region near the applied displacement boundary with a size of
d X w where w = 8.07. This was placed in an effort to avoid
numerical instabilities related to high plastic strains near
the applied displacement boundary. The polynomial filter is
used with a filter radius of R = 3.0 mm. We examine three
load cases with displacement applied over 14 time steps;
(@) &, = 1.0 mm &, = 0.0 mm, (b) &, = 0.0 mm &, = —1.0
mm, and (¢) ¢, = 0.05mm iz, = —1.0 mm. The continuation
on the projection strength and material interpolation expo-
nents is shown in Fig. 13. Finally, the domain is optimized
considering a volume fraction upper bound of V,,,. = 0.35,
a maximum number of optimization iterations of 250, and a
convergence tolerance of tol = 5.0 - 1074,

As observed in Fig. 11, the direction of the applied dis-
placements leads to vastly different topologies. For the first
example in Fig. 11 part (a), the topology contains two main
thick members to maximize plastic work for displacement in
the x direction. We also notice high regions of accumulated
plastic strains and von Mises stress around the region of
applied displacement and in the re-entrant corners. For the
Corbel structure subject to displacement in the y direction
in Fig. 11 part (b) we observe additional members in the
topology which act as bracing to maximize energy absorp-
tion for the downward displacement. Although both of the
previous applied displacements form a symmetric boundary
value problem, symmetry is not imposed and thus we do not
obtain perfect symmetry due to the unstructured mesh. For
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the final applied loading case in Fig. 11 part (c), we added
a small contribution of applied displacement in the x direc-
tion in addition to the same previous applied displacement
in case (b). With this, we obtain an asymmetric design with
a significant portion of the structure’s volume in the top half
of the domain. While the final topologies of the final two
applied displacement cases don’t resemble each other, their
deviatoric plane do with similar principal stress distribu-
tion as observed in Fig. 12. The deviatoric plane for case
(a) shows a larger distribution of quadrature points near the
yield surface; however, there are fewer quadrature points on
the yield surface at 4,361 versus the 6,893 and 6,796 quad-
rature points for cases (b) and (c), respectively. Finally, the
convergence plots are shown in Fig. 13 where all examples
reach the maximum number of optimization iterations.

6.3 Curved domains

The final numerical examples presented here showcase an
important feature of unstructured polygonal elements: the
meshing of complex, curved domains. Here, we optimize
two curved cantilever beams, the first of which we denote
as the Serpentine domain and the second which we call the
Curved beam, as shown in Fig. 14. The Serpentine domain
has dimensions defined by origins, O; = (0, —2.6458 mm)
and O, = (9 mm,5.2915 mm) and curves defined by
¢; =(0,,8.0 mm), ¢, =(0,,4.0 mm), c; = (0,,4.0 mm),
and ¢, =(0,,8.0mm) following the notation
¢ = (origin, radius); it also has an applied displacement
width of d = 0.53 mm. The Curved beam obtains dimen-
sions of O; = (0.0, 0.0) with curves ¢, = (0, 10.0 mm) and
¢, = (0,,20.0 mm) with an applied displacement width of
d = 2.5 mm. The Serpentine domain has an applied displace-
ment of #, = —0.5 mm and the Curved beam has an applied
displacement of i, = 0.5 mm, both imposed over 14 time
steps. Both structures are meshed with 16,000 polygonal
elements, are subject to a volume fraction upper bound of
Vnax = 0.4, and use a polynomial filter with a relative radius
of R =5.0zr. For the Curved beam we impose symmetry
about the y-axis (see Fig. 15).

The results of the curved domains are shown in Fig. 15
where the Serpentine domain has large amounts of accu-
mulated plastic strains near the supports and the applied
displacement region. The Curved domain instead experi-
ences high accumulated plastic strain in the inner, center
location of the beam. The final plastic work of the Curved
beam and the Serpentine domain are W?” = 28.05 N-mm and
WP = 9.44 N-mm as seen in the unscaled objective function
convergence plots in Fig. 16. In addition, because both of
the domains use the relative filter radius, they also have the
same maximum projection strength. The stress states are
illustrated in Fig. 17.

7 Conclusion

This paper places significant emphasis on the topology opti-
mization methodology considering elastoplasticity for peda-
gogical purposes, from the nonlinear forward problem to the
complex path-dependent sensitivity analysis. The authors
motivate the use of the oe.contract method from the
opt-einsum package for an educational and intuitive
transition from equations on paper to implementation in
code. The PolyPlas program is demonstrated to produce
optimized results with high energy absorption through the
framework of maximizing the plastic work.

A detailed discussion on the theoretical framework of
elastoplastic topology optimization is presented in con-
junction with providing a modular, open-source program,
PolyPlas. This code is inspired by the preexisting Poly-
Top programs; however, it is developed in an entirely new
framework in Python utilizing object oriented programming
for improved modularity and organization. We wish to add
to the library of educational topology optimization codes
considering unstructured polygonal elements. Similar to
the former developments, PolyPlas contains a general
framework allowing the consideration of complex domain
geometries, utilizing a Python implementation of Poly-
Mesher. By introducing an educational code for topol-
ogy optimization considering elastoplasticity, we hope that
PolyPlas stimulates further advancement in the field of
topology optimization considering energy-dissipative phe-
nomena by means of an open-source program for academic
and industrial users alike.

Appendix A Return mapping algorithm

Here, the standard return mapping algorithm is described
as presented in de Souza Neto et al. (2011). The procedure
of updating the state variables at the next pseudo-time step
begins with the elastic trial state,

pitrial _ p
€ TE& (64)
trial __ d p.trial
sy =2GP (g4, — €1 ) (65)
trial __
ol =a. (66)

If the trial state is admissible, (i.e., @(sffr’f’, alffl“l) < 0), then
it is accepted,

p _ _ptrial

£i+1 — it (67)
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Sivr = ST (68)
Uy = oy (69)
C) = 2GPy,, (70)

where we also provide the deviatoric part of the consist-
ent tangent, C?ﬂ. If the trial state is not admissible (i.e.,
7 l i ] . . .
O(s, al'l") > 0), then the radial return mapping is per-
formed. The corresponding update of the plastic multiplier
increment may be expressed in closed form for the linear

hardening rule assumed in this work:

q)(s{rial alrial
i+1° "n+l (71)

Ain = 367H

Alternatively, one could extend this framework to nonlinear
hardening functions in which the plastic multiplier incre-
ment may be determined via a local Newton iteration. The
corresponding update of the state variables for the plastic
step is provided below, along with the deviatoric part of the
consistent tangent.

Jtrial
£, =€, +AYN 72)
SH'I = - trial si:f‘]l (73)
9iv1
@y, = a4 Ay (74)
coer = 2G<1 - Ay—36>u3>d@v +6G2<A—?/ S >N®N
I trial trial 3G + H
9ir1 9in1
(75)

Appendix B Sensitivity analysis verification

Here, the details regarding the sensitivity analysis verifi-
cation are presented. A cantilever beam is analyzed with
a downward prescribed displacement of —0.1 mm, applied
over 10 time steps with material properties as shown in
Table 3 and a finite element mesh composed of 300 polygo-
nal elements. The dimensions and boundary conditions are
depicted in Fig. 18.

The numerical sensitivities are obtained by the central
finite difference method,

@ Springer

dfx) [+ Ax)—f(x — Ax;)
dx, 2Ax

l

(76)

where the Ax; denotes a vector with the only nonzero per-
turbation of 10~ corresponding to design variable i. The
numerical sensitivity is computed for each design variable
and is compared against the analytical sensitivity as shown
in Fig. 19. This procedure is performed in the PolyPlas
function finite_difference_sensitivity_checker().

Appendix CThe oe.contract tutorial

The oe.contract method from the opt-einsum
package (Daniel and Gray, 2018) is a powerful tool used
in the PolyPlas program to evaluate expressions in Ein-
stein summation convention. For mechanicians this ena-
bles a smoother transition from the derivations on paper to
the implementation in code. This package was built off of
Numpy’s einsum package (Harris et al. 2020) to perform
in the same way as the np . einsum method; however, it
reduces the execution time of large e i nsum operations by
using algorithms to optimize the execution of complex con-
tractions. This tutorial aims to demonstrate some examples
relating the mechanics equations to their corresponding oe .
contract application. For more information on the opt
einsum package, see the official documentation.

Starting off with the standard linear elastic relationship
for the Cauchy stress tensor by the contraction of the fourth
order isotropic material tensor and the elastic strain tensor
we have the following in summation notation,

;= Cg/‘szkz ()

which may be written equivalently in the program by,

stress = oe.contract("ijkl,kl->ij", material_tensor, elastic_strain) (7 8)

where the first argument in oe . contract contains the
indices of the input variables and the indices of the resulting
tensor are placed to the right of the arrow. For scalar output,
there are no indices places to the right of the arrow. The
remaining entries correspond to the tensorial inputs for the
described operation (e.g., the material constitutive tensor
and the elastic strain tensor).

For further flexibility, oe.contract also allows
alternative array operations that may not follow the stand-
ard rules of classical Einstein notation. An example of this
that is commonly used in PolyPlas includes computing a
contraction in a vectorized fashion for all elements and/or
quadrature points simultaneously. Using the same equation


https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://optimized-einsum.readthedocs.io/en/stable/
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as before, one could instead compute the stress tensor for
each quadrature point in every element by,

outer products in the oe . contract operation. A portion
of this partial derivative expression is denoted by ¢, and

stress = oe.contract("eqijkl,eqkl->eqij", material_tensor, elastic_strain). (79)

Notice that this operation doesn’t follow the standard Ein-
stein summation rules since the repeated eq indices don’t
behave as dummy indices and no summation is performed
over them. Instead, the output results in a contraction opera-
tion performed over k and / only.

Below, we present a few more examples of indicial
notation expressions and their corresponding implemen-
tation in code. This next example demonstrates how the
‘... entry broadcasts a constant scalar in the contraction
operation when computing the deviatoric stress,

s = 2GIP§.Z;6,€, (80)
with its corresponding oe.contract implementation
performed via

deviatoric_stress =oe.contract("...,ijkl,eqkl->eqij", (81)
2.0 * shear_modulus, (82)
deviatoric_projection_tensor, (83)
elastic_strain). (84)

Next a portion of the flow rule derivative with respect to the
plastic strain is shown below to showcase how to implement

temp 1 in the code.

w= T = Gy ®
temp_1 =oe.contract("qij,qkl->qijkl", (86)
deviatoric_stress_over_deviatoric_stress_norm, 87)
deviatoric_stress_over_deviatoric_stress_norm) (88)

Here the g index refers to the tofal number of quadrature
points per element type. The indices can represent any
dimension so long as they are consistent within the opera-
tion. To view the full implementation of the partial deriva-
tive of the flow rule with respect to the plastic strain as seen
in Egs. (48) and 49, see lines 1299 — 1306 and 1341 — 1359
of PolyPlas.py.

Appendix D Library of benchmark examples

Table 4.
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Table 4 Examples provided

Description

. Domain
with PolyPlas
yu
“d
o ke L
ol il
L
Y k_y
L digr— _X
Yy
L L

e Domain: HalfPortalFrame

e Dimensions: L = 60 mm, a = 12.5mm, b = 17.5
mm, ¢ = 2.75 mm

* Applied displacement: &, = 1.0 over 14 time steps

* Domain: Corbel

e Dimensions: L = 60 mm, d = 3.2 mm

* Applied displacement: (a) #, = 1.0 mm &, = 0.0
mm, (b) &, = 0.0 mm &, = —1.0 mm, and (c)
it, = 0.05mm i, = —1.0 mm; over 14 time steps

* Domain: SerpentineDomain
* Dimensions: O; = (0, —2.6458 mm),
0, = (9 mm, 5.2915 mm), ¢, = (0, 8.0 mm),
¢, =(0,,4.0 mm), c; = (0,,4.0 mm),
¢, =(0,,8.0mm),d = 0.53 mm
* Applied displacement: &, = 0.5 over 14 time steps

* Domain: CurvedBeam

* Dimensions: O, = (0.0,0.0), ¢, = (0, 10.0 mm),
¢, =(0,,20.0 mm),d = 2.5mm

* Applied displacement: &z, = 0.5 over 14 time steps
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