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Abstract
We present PolyPlas, a Python implementation for a structural topology optimization framework considering von Mises plas-
ticity with unstructured polygonal finite element meshes. The modular structure of this code is inspired by PolyTop—an early 
educational code for compliance minimization for linear elastic material. For the purpose of open-source access and extensibility, 
PolyPlas is fully realized in Python. The nonlinear forward problem is solved via a Newton Raphson procedure with backtracking 
line search for improved convergence stability. The path-dependent sensitivity analysis is conducted using the adjoint method and 
a detailed discussion on the path-dependent algorithm and implementation of the sensitivity analysis is included herein. Finally, 
several numerical examples are presented to illustrate the capabilities of PolyPlas in solving topology optimization problems 
considering von Mises plasticity, resulting in structures with high energy absorption. PolyPlas is wholly intended for educational 
purposes and to motivate further advancement in the field of topology optimization considering energy-dissipative phenomena.
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1  Introduction

Since its inception in the work of Bendsøe and Kikuchi 
(1988), topology optimization has become a powerful engi-
neering design method to optimize placement of material to 
extremize a specified design objective. Although the field is 
extensive with many significant advancements, the majority 
of the work in the literature is limited to linear or nonlin-
ear elasticity (Sigmund and Maute 2013). Nonetheless, there 
have been several contributions investigating material inelas-
ticity in conjunction with topology optimization frameworks 
that handle the history-dependent deformation and energy-
dissipative phenomenon during the design process. One of 
the first efforts in considering elastoplasticity in structural 

optimization was done by Yuge and Kikuchi (1995), who pre-
sented a framework that computed the elastoplastic analysis 
based on the homogenization method to inform the design of 
a frame structure based on linear Timoshenko beam theory. 
Later Maute et al. (1998) proposed a topology optimization 
formulation to maximize structural ductility considering von 
Mises material with linear, isotropic hardening; however, they 
simplify the sensitivity analysis by neglecting some terms. 
Additional work by Kato et al. (2015) proposed a framework 
for the design of composite materials undergoing elastoplastic 
deformation making some assumptions which simplify the 
sensitivity analysis. Bogomolny and Amir (2012) approached 
the design of steel-reinforced concrete structures by incorpo-
rating Drucker–Prager and von Mises yield criteria within the 
topology optimization formulation. Their sensitivity analysis 
was derived analytically using the adjoint method following 
the framework established by Michaleris et al. (1994); Vidal 
and Haber (1993), thus representing the first complete analyti-
cal derivation of the sensitivity analysis for topology optimi-
zation considering elastoplasticity. The adjoint method has 
since become the standard approach in most of the topology 
optimization frameworks that consider elastoplasticity and is 
further elaborated upon in a unified framework for nonlinear 
path-dependent sensitivity analysis by Alberdi et al. (2018).
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More recent works of elastoplastic topology optimization 
frameworks have considered cyclical loading with kinematic 
hardening (Li et al. 2017a) and anisotropic material behavior 
(Zhang et al. 2017). Additional advancements to these elas-
toplastic frameworks include the consideration of failure cri-
teria. For example, Li et al. (2017b) presented a novel frame-
work to consider elastoplasticity coupled with the Lemaitre 
damage model to account for local failure constraints during 
the design. Other works that considered elastoplasticity with 
failure criteria include the work by Alberdi and Khandelwal 
(2017) wherein shear loading constraints are considered 
in the optimization framework using an aggregation func-
tion. Kuci and Jansen (2022) later presented a framework 
to consider elastoplastic materials that handle local stress 
constraints in a level-set framework, adapting the formula-
tion presented by Senhora et al. (2020) via the Augmented 
Lagrangian approach. In contrast, Amir (2017) proposed a 
method to indirectly generate stress-constrained designs for 
linear elastic structures without explicitly imposing stress con-
straints by utilizing the elastoplastic model subject to a sin-
gle global constraint on the accumulated plastic strain. In the 
work by Russ and Waisman (2021) both local ductile failure 
constraints and buckling are incorporated. Elastoplastic topol-
ogy optimization frameworks have also been developed to 
design two-dimensional  periodic materials with high energy 
absorption as in the work by Alberdi and Khandelwal (2019) 
where computational homogenization is used to characterize 
the appropriate anisotropic plasticity behavior for the repre-
sentative unit cell, and in the work by Abueidda et al. (2021) 
which informed the design of a three-dimensional periodic 
elastoplastic architected material. Additional frameworks have 
also been presented to approximate the elastoplastic material 
behavior based on path-independent nonlinear elasticity (Zhao 
et al. 2019, 2020) and on deformation plasticity (Li et al. 
2024); thus significantly reducing the computational effort. 
However, these models are strictly limited to proportional 
loading and do not capture the dissipative physics. Several 
works have also incorporated finite deformation kinematics 
into elastoplastic topology optimization frameworks (Wallin 
et al. 2016; Ivarsson et al. 2021; Han et al. 2024).

In addition to these developments in topology optimiza-
tion frameworks, there has been concurrent progress in the 
broad dissemination of topology optimization via open-source, 
educational programs (Wang et al. 2021), beginning with the 
first contribution top99 which introduced a 99-line Matlab 
code for compliance minimization topology optimization for 
linear elasticity (Sigmund 2001). Subsequent works included 
Top3D, a 3D topology optimization program for compliance 
minimization which incorporated additional implementation 

details for heat conduction and compliant mechanism problems 
considering linear elasticity (Liu and Tovar 2014). Recently 
there have also been extensions to speed-up and improve the 
performance of these programs by means of vectorization and 
array preallocation (Andreassen et al. 2011), parallel program-
ming (Aage et al. 2015) and other acceleration techniques (Fer-
rari and Sigmund 2020). Extensions to more complex physics 
like linear buckling analysis (Ferrari et al. 2021) and homog-
enization theory (Xia and Breitkopf 2015) have also been 
provided. The presented educational program in this work is 
inspired by PolyTop, a compliance minimization framework 
for linear elasticity considering unstructured polygonal ele-
ments (Talischi et al. 2012b). PolyTop ignited a series of 
topology optimization programs including PolyTopFluid 
which was developed to handle Stokes equation where the 
polygonal elements were demonstrated to have improved sta-
bility for incompressible viscous flow using a low-order mixed 
finite element formulation (Pereira et al. 2016). Later Poly-
Mat was presented to handle multiple linear elastic materials 
(Sanders et al. 2018). PolyTop3D included the extension to 
3D topology optimization for compliance minimization using 
the virtual element method approach (Chi et al. 2020). More 
recently, PolyStress provided the extension to local stress 
constraints in the topology optimization framework, also with 
the option to include nonlinear elasticity (Giraldo-Londoño 
and Paulino 2021b). Finally, PolyDyna extended the Poly-
Top suite to structural dynamics using an HHT-� time integra-
tion scheme (Giraldo-Londoño and Paulino 2021a).

The entirety of the aforementioned educational topology 
optimization programs are limited to linear or nonlinear 
elasticity. This work provides an original attempt at an 
open-source, educational topology optimization framework 
considering elastoplasticity. In this work, we present an 
open-source code for topology optimization considering von 
Mises elastoplasticity with a linear hardening rule. Here we 
present two major contributions: (1) a thorough explana-
tion of the path-dependent sensitivity analysis for von Mises 
plasticity together with a detailed discussion on the imple-
mentation of the history-dependent algorithm into the code 
and (2) providing an open-source topology optimization 
program that considers energy-dissipative phenomenon in 
an extendable, modular framework. The program is imple-
mented in Python, making it accessible for academic and 
industry users alike. With its modular structure, this frame-
work aims to promote further developments and extensions.

The remainder of the paper is organized as follows: Sect. 2 
begins by describing the nonlinear finite element analysis. 
In Sect. 3, the density-based topology optimization formu-
lation is described. Section 4 discusses the path-dependent 
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sensitivity analysis in detail, followed by a discussion of 
the organization of PolyPlas in Sect. 5. Finally, three 
numerical examples are presented to demonstrate the capa-
bilities of the software in Sect. 6. Concluding remarks are 
made in Sect. 7 with additional information provided in the 
appendices.

2 � Nonlinear finite element analysis 
framework

Consistent with the former PolyTop literature, we begin 
by describing the classical continuum topology optimization 
problem within a general framework. The goal of topology 
optimization is to optimize the shape of a structure, 𝜔 ⊆ ℝ

d 
in d space dimensions where d = 2 in this work. This may 
be mathematically expressed by:

where f is the objective function to be minimized subject to 
K number of constraints, gi . The symbol O represents the set 
of admissible shapes for � . Each evaluation of the objective 
and constraint functions is dependent on the solution of the 
boundary value problem, u . The strong form of the initial 
boundary value problem for a solid body satisfying static 
equilibrium in absence of body forces is shown below:

Here the shape � is within the closed domain Ω with bound-
ary Γ , � is the Cauchy stress tensor and �⋅ is the divergence 
operator. The Dirichlet boundary conditions are separated 
into zero displacements imposed on the partition of the 
boundary ΓD ⊆ Γ and nonzero prescribed displacements 
imposed on Γ̃D ⊆ Γ with Γ̃D ∩ ΓD = � (see Fig. 1).

The Cauchy stress tensor may be decomposed into volu-
metric and deviatoric components such that � = pI + s 
where p =

1

3
I ∶ � is the pressure stress and s = ℙdev ∶ � is 

the deviatoric stress. Note that I is the second order identity 
tensor and ℙdev ≡ 𝕀

s −
1

3
I⊗ I is the deviatoric projection ten-

sor constructed using the fourth order symmetric identity 
tensor, �s

ijkl
=

1

2

(

�ik�jl + �il�jk
)

.

2.1 � Weak form

The solution of the boundary value problem u ∈ V 
is determined via the finite element method begin-
ning with the weak form of the initial boundary value 
problem where the space of admissible displacements 

(1)
inf
�∈O

f (�, u)

s.t. gi(�, u) ≤ 0, i = 1, ..,K

(2)

� ⋅ � = 0 in Ω

u = ūD on Γ̃D ⊆ Γ

u = 0 on ΓD ⊆ Γ

V =
{

u ∈ H1
(

𝜔,ℝ2
)

∶ u|ΓD
= 0, u|Γ̃D

= ūD

}

 . We start by 
writing the total potential energy as a three-field variational 
principle in anticipation of employing the mean dilatation 
formulation (Nagtegaal et al. 1974; Simo et al. 1985) to 
avoid potential volumetric locking. The terms with the sub-
script (⋅)n+1 are associated with the pseudo-time from the 
standard backward Euler time integration:

The independent field variables at the next time increment 
include the displacement field ui+1 , a volume-like field vari-
able Θi+1 , and the pressure pi+1 . Here � represents the bulk 
modulus, G represents the shear modulus, and �e,dev

i+1
 is the 

deviatoric component of the elastic strain tensor,

with

representing the total strain tensor under the assumption of 
small deformation. The Euler Lagrange equations associ-
ated with the minimization of this potential energy are then 
expressed by

(3)

Π
(

ui+1,Θi+1, pi+1
)

= ∫Ω

[

1

2
�Θ2

i+1
+ G�

e,dev

i+1
∶ �

e,dev

i+1
+ pi+1(� ⋅ ui+1)

]

.

(4)�
e,dev

i+1
= ℙ

dev ∶ (�i+1 − �
p

i+1
)

(5)�i+1 = �
s
ui+1

(6)

�Π
ui+1

= ∫Ω

(

si+1 ∶ ��u + pi+1� ⋅ �u
)

dV = 0, ∀�u ∈ V0

(7)�ΠΘi+1
= ∫Ω

�Θ
(

�Θi+1 − pi+1
)

dV = 0, ∀�Θ ∈ W

Fig. 1   Design domain and boundary conditions of the solid body 
[adapted from Talischi et al. (2012b)]
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where 𝛿u ∈ V0 ≡
�

u ∈ H1(𝜔,ℝ2), 𝛿u�Γ̃D

⋃

ΓD
≡ 0

�

 repre-

sents the virtual displacement, �Θ ∈ W ≡ {

Θ ∈ L2(�,ℝ)
}

 
r e p r e s e n t s  t h e  v i r t u a l  d i l a t a t i o n ,  a n d 
�p ∈ X ≡ {

p ∈ L2(�,ℝ)
}

 denotes the virtual pressure.

2.2 � Finite element discretization

An approximate solution is then obtained using the Galerkin 
finite element method in the usual manner, searching for 
a solution in a finite dimensional subspace of the infinite 
dimensional counterparts. The original domain is parti-
tioned into Nelem non-overlapping elements which span the 
discretized domain Ω̄ ⊆ Ω such that ∪Nelem

l=1
Ω̄

�
= Ω̄ and satisfy 

Ω̄k ∩ Ω̄
�
= � ∀k ≠ �.

A standard Lagrange finite element interpolation is used 
for the displacement field approximation, u(h) , constructed 
using piecewise linear shape functions defined over each ele-
ment, forming the basis for the underlying finite dimensional 
subspace Vh ⊆ V . The approximations for the dilatation 
field, Θ(h) ∈ Wh ⊆ W , and pressure field p(h) ∈ Xh ⊆ X  , are 
interpolated in a piecewise constant manner over each finite 
element, consistent with the mean dilatation formulation. 
Following the Galerkin procedure, the virtual displacement, 
virtual dilatation, and virtual pressure fields are interpolated 
over each finite element using the same shape functions as 
their non-virtual counterparts. The linear mapping from the 
vector of nodal displacements, ūi+1 , to the displacement 
approximation in a given finite element is represented via an 
array of shape function values, Nu , evaluated at the relevant 
spatial position. The corresponding gradient and divergence 
of the displacement approximation is also constructed in a 
similar manner via the arrays of shape function derivatives, 
B
u and Bu

div
 , respectively. That is,

for the trial displacement solution, and

for the corresponding virtual displacements. Substituting the 
finite element approximations into Eq. (6) and invoking the 
standard procedure with the nodal virtual displacements, 𝜹ū , 
we arrive at the global residual contribution from a single 
element,

(8)�Πpi+1
= ∫Ω

�p
(

� ⋅ ui+1 − Θi+1

)

dV = 0, ∀�p ∈ X

(9)

u
(h)

i+1
≈ N

u
ūi+1

�
s
u
(h)

i+1
≈ B

u
ūi+1

� ⋅ u
(h)

i+1
≈ B

u
div
ūi+1

(10)

�u(h) ≈ N
u�ū

�
s�u(h) ≈ B

u�ū

� ⋅ �u(h) ≈ B
u
div
�ū

A similar process for Eqs. (7) and (8) results in the expres-
sions for the constant dilatation and pressure interpolation 
over each element. Namely,

and

which may be substituted into Eq. (11), condensing the 
dilatation and pressure degrees of freedom out of the global 
system of equations. The element Jacobian matrix may then 
be computed via

with ℂdev
i+1

 representing the deviatoric component of the con-
sistent tangent tensor (Simo and Hughes 2006), provided 
in Appendix A. The element residual vectors and Jacobian 
matrices are assembled into their global counterparts via the 
standard finite element assembly operations:

The nonlinear system of equations is solved using the New-
ton Raphson method, updating the nodal displacement vec-
tor by

where m represents the Newton iteration number. The itera-
tion continues until the relative �2 norm of the global resid-
ual vector falls below a specified tolerance.

2.3 � Elastoplastic constitutive model

In this subsection, we describe the main pieces of the clas-
sical von Mises plasticity model used in this work. Under 
the assumption of small deformation, the total strain may 
be additively decomposed into its elastic and plastic com-
ponents by,

(11)R
e
i+1

= ∫Ωe

B
uT ∶ si+1dV + pi+1 ∫Ωe

B
uT

div
dV .

(12)Θi+1 =
1

Ve
∫Ωe

B
u
div
ūi+1dV

(13)pi+1 = �Θi+1

(14)

J
e

i+1
=

𝜕Re

i+1

𝜕ū
i+1

= ∫Ω
e

B
u
T

∶ ℂ
dev

i+1
∶ B

u
dV +

𝜅

V
e

(

∫Ω
e

B
u
T

div
dV

)(

∫Ω
e

B
u

div
dV

)

(15)Ri+1 =
Nelem

A
e=1

R
e
i+1

, Ji+1 =
Nelem

A
e=1

J
e
i+1

(16)ū
m+1
i+1

= ū
m
i+1

− J
m−1

i+1
R
m
i+1

(17)� = �e + �p.
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The yield function depends only on the deviatoric stress 
and the accumulated plastic strain, � . It is defined by the 
following,

where the first term on the right corresponds to the von 
Mises stress and �y(�) is the current yield stress which may 
evolve throughout the deformation history. Here we assume 
a linear hardening rule,

where H is the material hardening modulus and �0
y
 is the 

initial value of the yield stress. The elastic response is 
assumed to be linear and isotropic, with the deviatoric 
stress related to the elastic strain in the classical manner, 
s = 2Gℙdev ∶ (� − �p) . In this setting the shear modulus 
and bulk modulus may be defined in terms of the elastic 
modulus E and Poisson’s ratio � by G = E∕2(1 + �) and 
� = E∕3(1 − 2�) , respectively.

An associative flow rule is assumed which governs the evo-
lution of the plastic strain,

where 𝛾̇ is the plastic multiplier and N = �Φ∕�� governs 
the direction of plastic flow. Additionally, the Karush-
Kuhn-Tucker (KKT) conditions ensure that the stress state 
is admissible and that there is plastic flow only when the 
stress is on the yield surface (Simo and Hughes 2006).

Finally, the consistency condition ensures that the stress state 
persists on the yield surface in the event of plastic flow, pre-
cluding the possibility of a future inadmissible state, namely,

Together, these equations form an initial value problem 
that describes the evolution of the material’s internal state 
over the given load path. The continuous problem is then 
solved by discretizing the equations in pseudo-time using 
a backward Euler scheme (de Souza Neto et al. 2011). This 
leads to the fully implicit radial return mapping algorithm 
in Appendix A for isotropic von Mises plasticity which is 
simplified by coaxiality. The local residual equations in their 
incremental form ( i = 1, ...,Nsteps ) are gathered into a vec-
tor, Heq

i
 , containing the expressions for the update of the 

accumulated plastic strain, the plastic multiplier increment, 
and the plastic strain. For elastic loading the local residual 
equations correspond to,

(18)Φ(s, �) =

√

3

2
s ∶ s − �y(�)

(19)�y(�) = �0
y
+ H�

(20)�̇p = 𝛾̇N = 𝛾̇

√

3

2

s

||s||

(21)Φ ≤ 0, 𝛾̇ ≥ 0, 𝛾̇Φ = 0.

(22)𝛾̇Φ̇ = 0.

and for plastic loading we obtain,

The index q represents the quadrature point index corre-
sponding to element index e.

3 � Topology optimization formulation

Here we present the basic topology optimization formula-
tion of PolyPlas, including a discussion on the material 
interpolation, the density filter and projection scheme, and 
the actual topology optimization statement (objective and 
constraints). We remark that, in keeping with the Poly-
Plas philosophy, any of these expressions can be easily 
changed within the modular structure of the code.

3.1 � Material interpolation

Density-based topology optimization appoints the element 
density in each finite element where �e = 0 corresponds to 
void and �e = 1 to solid material. As stated, this problem 
leads to an integer programming problem, often render-
ing the problem intractable. The continuous relaxation of 
the material interpolation, � ∈ [0, 1] , enables the use of 
gradient-based optimization, largely mitigating the antici-
pated intractably large computational expense. Using such 
a continuous parameterization, the SIMP method, initially 
proposed by Bendsøe (1989), is used to interpolate the 
relevant material properties, including

where the exponents p and q represent the elastic and plas-
tic penalization exponents, respectively, and the parameters 
Esolid,Hsolid, and �0,solid

y
 represent the elastic modulus, harden-

ing modulus, and initial yield stress of the solid material. The 

(23)H

eq

i
=

⎡

⎢

⎢

⎢

⎣

h
eq

i,1

h
eq

i,2

h
eq

i,3

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

�i − �i−1
Δ�i

�
p

i
− �

p

i−1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

(24)H

eq

i
=

⎡

⎢

⎢

⎢

⎣

h
eq

i,1

h
eq

i,2

h
eq

i,3

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�i − �i−1 − Δ�i
�

3

2
si ∶ si −

�

�0
y
+ H�i

�

�
p

i
− �

p

i−1
−

�

3

2
Δ�i

si

��si��

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

.

(25)Ee =
(

�e + (1 − �e)�
p
e

)

Esolid

(26)He =
(

�e + (1 − �e)�
p
e

)

Hsolid

(27)�0
y,p

=
(

�p + (1 − �p)�
q
e

)

�0,solid
y
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ersatz parameter is defined for the elastic material properties 
by, �e = 10−8 and for the initial yield stress by, �p = 10−4 . 
Although the material interpolation is scaling down the elas-
tic modulus in a physically consistent manner, the scaling of 
yield stress will result in high values of accumulated plastic 
strains in the intermediate density regions. In an attempt to 
avoid numerical instabilities associated with this phenom-
enon, a separation of material interpolation schemes is per-
formed by setting the plastic material penalization exponent 
smaller than the elastic exponents (Maute et al. 1998).

3.2 � Density filter and projection schemes

Although continuous parametrization is used for the den-
sity variables in the design space A , this alone does not 
address the issue of well-posedness of the problem nor 
alleviate the potential checkerboard patterns (Talischi 
et al. 2012b). Hence, regularity restrictions are introduced 
in the design space by means of a linear polynomial filter-
ing scheme. In this work, we adopt nodal design variables 
similar to Guest et al. (2004). A convex combination of 
the design variables, z form the filtered field, �̄ with a filter 
radius, R. This linear mapping from the design variables to 
their filtered counterparts may be expressed as

where

and the notation xi represents the coordinates of node i. The 
filtered design variables are then mapped to each element 
centroid using the element shape functions, after which the 
filtered element densities are projected to produce the physi-
cal densities as discussed below.

Lastly, in order to partially mitigate the transition region 
of intermediate densities that remain from the continuous 
parametrization, the volume preserving Heaviside projection 
scheme is imposed on the filtered densities (Xu et al. 2010; 
Wang et al. 2011).

The � parameter governs the strength of the projection and 
the � parameter governs the threshold at which the projec-
tion occurs. For example, herein, we set � = 0.5 and the ini-
tial � = min(1.0, 2R∕�) where � is the largest edge length 
in the finite element mesh. After the first 100 optimization 
iterations, we apply a continuation scheme on the projection 

(28)𝜌̄i =
zj 𝜔(xi, xj)
∑

j 𝜔(xi, xj)
= Pijzj

(29)�(xi, xj) = max

�

1 −
‖xi − xj‖

R
, 0

�

(30)𝜌e(𝜌̄e(z)) =
tanh(𝛽𝜂) + tanh(𝛽(𝜌̄e − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

strength such that it increases in four equal increments for 
each subsequent 25 optimization iterations until it reaches 
the maximum projection strength �max = 2R∕� at optimiza-
tion iteration 200; this is an adaptation of the approach by 
da Silva et al. (2019).

3.3 � Topology optimization statement

The design objective is to maximize the plastic work of a 
structure undergoing a specified applied displacement sub-
ject to a volume constraint. The mathematical optimization 
statement is:

 As seen from Eq. (31), the optimization problem is also 
subject to equilibrium constraints, ensuring that the struc-
ture satisfy both the global and local equilibrium at each 
time step (i.e., Ri = 0 and Hi = 0 for i = 1, ..., n ). Here we 
introduce the vector of independent internal local variables, 
denoted as v , where vi = {�i,Δ�i, �

p

i
} . Both residuals depend 

on the set of internal variables, vi and the nodal displace-
ments, ui . Additionally, they also depend on the state from 
the previous time step, vi−1 and ui−1 , thereby introducing 
the path dependency. The vector of design variables, z , is 
controlled by the optimizer and is used to determine the 
filtered and projected element densities, �(�̄(z)) . The scalar 
measure of plastic work is computed by integrating the con-
traction of the stress, � and the rate of plastic strain, �̇p over 
time and volume using the trapezoidal rule. This is achieved 
numerically by,

where eq notation refers to the quadrature point index q of 
element index e and weq represents the Jacobian of the map-
ping multiplied by the corresponding quadrature weight. For 
more information on the eq notation, see Sect. 4.1. Finally, 
the volume constraint is bounded by the maximum volume 
fraction, Vmax where � is the vector of element densities and 
Vtotal is the total volume of the domain.

(31)

max
z

f (�(z), {ui}, {vi}) = �t �Ω

� ∶ �̇p dVdt

s.t. g(�(z)) =
1

Vtotal
�Ω

� dV − Vmax ≤ 0

Ri(�(z), ui, ui−1, vi, vi−1) = 0, i = 1, ..., n

Hi(�(z), ui, ui−1, vi, vi−1) = 0, i = 1, ..., n.

(32)

f (�(z), {ui}, {vi}) ≈
1

2

n
∑

i=1

Nelem
∑

e=1

Nquad
∑

q=1

(

�
eq

i
+ �

eq

i−1

)

∶
(

�
p,eq

i
− �

p,eq

i−1

)

weq



PolyPlas: a Python implementation of a topology optimization framework for plasticity with… Page 7 of 30  153

4 � Path‑dependent sensitivity analysis

One of the most significant challenges when considering 
elastoplasticity in topology optimization is the derivation 
of the sensitivities due to the path-dependent nature of the 
problem. Here, we adopt the adjoint method, which begins 
by constructing a Lagrangian function composed of the 
original function, f, and the inner products of the local and 
global residuals, Hi and Ri , with their corresponding adjoint 
vectors, �i and �i,

We denote Eq. (33) as the augmented function, f̂  , for which 
the value and derivative with respect to � are equivalent to 
that of the original objective function,

The adjoint vectors are selected to avoid the expensive com-
putation of the state derivatives, dui∕�� and dvi∕�� . This is 
done by rearranging terms,

where the adjoint vectors are computed such that they satisfy 
the following systems of equations, starting with the final 
time step i = n:

(33)
f̂ (�, {un}, {vn}) = f (�, {un}, {vn}) +

n
∑

i=1

(

�T
i
Ri(�, ui, ui−1, vi, vi−1)

+ �T

i
Hi(�, ui, ui−1, vi, vi−1)

)

(34)

df̂

d�
=

df

d�
=

𝜕f

𝜕�
+

n
∑

i=1

𝜕f

𝜕ui

dui

d�
+

𝜕f

𝜕vi

dvi

d�
+

n
∑

i=1

�T
i

(

𝜕Ri

𝜕�
+

𝜕Ri

𝜕ui

dui

d�
+

𝜕Ri

𝜕ui−1

dui−1

d�
+

𝜕Ri

𝜕vi

dvi

d�
+

𝜕Ri

𝜕vi−1

dvi−1

d�

)

+

n
∑

i=1

�T

i

(

𝜕Hi

𝜕�
+

𝜕Hi

𝜕ui

dui

d�
+

𝜕Hi

𝜕ui−1

dui−1

d�
+

𝜕Hi

𝜕vi

dvi

d�
+

𝜕Hi

𝜕vi−1

dvi−1

d�

)

(35)

df̂

d�
=
𝜕f

𝜕�
+

du
n

d�

(

𝜕f

𝜕u
n

+ �T

n

𝜕R
n

𝜕u
n

+ �T

n

𝜕H
n

𝜕u
n

)

+
dv

n

d�

(

𝜕f

𝜕v
n

+ �T

n

𝜕R
n

𝜕v
n

+ �T

n

𝜕H
n

𝜕v
n

)

+

n
∑

i=1

(

�T

i

𝜕R
i

𝜕�
+ �T

i

𝜕H
i

𝜕�

)

+

n−1
∑

i=1

du
i

d�

(

𝜕f

𝜕u
i

+ �T

i

𝜕R
i

𝜕u
i

+ �T

i

𝜕H
i

𝜕u
i

+ �T

i+1

𝜕R
i+1

𝜕u
i

+ �T

i+1

𝜕H
i+1

𝜕u
i

)

+

n−1
∑

i=1

dv
i

d�

(

𝜕f

𝜕v
i

+ �T

i

𝜕R
i

𝜕v
i

+ �T

i

𝜕H
i

𝜕v
i

+�T

i+1

𝜕R
i+1

𝜕v
i

+ �T

i+1

𝜕H
i+1

𝜕v
i

)

and the remaining time steps, i = 1, ..., n − 1:

The solution of these system of equations can be compactly 
described for i = 1, .., n by denoting the right hand side of 
both Eqs. (36) and (37) as Fu

i
 and Fv

i
 and rearranging the 

terms,

Notice that the construction of the system of equations varies 
depending on whether the analysis is at the final time step 
or not. This implementation of this procedure for computing 
the adjoint vectors is further described in Sect. 5.4.1.

Finally, after determining the adjoint vectors, we arrive at 
the reduced form for the function sensitivity,

This leads to the following explicit partial derivatives that 
must be obtained.

Note that for the evaluation of the sensitivities with respect 
to the design variables z , the chain rule must be applied to 
the sensitivities computed with respect to the filtered and 
projected design variables as shown below,

(36)nth time step ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�T
n

�Rn

�un
+ �T

n

�Hn

�un
= −

�f

�un

�T
i

�Ri

�vi
+ �T

n

�Hn

�vn
= −

�f

�vn

(37)

ith time step ∶

⎧

⎪

⎨

⎪

⎩

�T

i

�R
i

�u
i

+ �T

i

�H
i

�u
i

= −

�

�f

�u
i

+ �T

i+1

�R
i+1

�u
i

+ �T

i+1

�H
i+1

�u
i

�

�T

i

�R
i

�v
i

+ �T

i

�H
i

�v
i

= −

�

�f

�v
i

+ �T

i+1

�R
i+1

�v
i

+ �T

i+1

�H
i+1

�v
i

�

.

(38)

(

�Ri

�ui
−

�Ri

�vi

�H−1
i

�vi

�Hi

�ui

)T

�i = F
u
i
−

�HT
i

�ui

�H−T
i

�vi
F
v
i

(39)�i =
�H−T

i

�vi

(

F
v
i
−

�RT
i

�v
�i

)

(40)
df̂

d�
=

𝜕f

𝜕�
+

n
∑

i=1

(

�T
i

𝜕Ri

𝜕�
+ �T

i

𝜕Hi

𝜕�

)

(41)

For f ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�f

��

�f

�u
i

�f

�v
i

, for R
i
∶

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�R
i

��

�R
i

�u
i

�R
i

�u
i−1

�R
i

�v
i

�R
i

�v
i−1

, for H
i
∶

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�H
i

��

�H
i

�u
i

�H
i

�u
i−1

�H
i

�v
i

�H
i

�v
i−1
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4.1 � Local residual derivatives

Here we start by introducing the implemented polygonal ele-
ment integration scheme. General irregular polygons do not 
admit a standard quadrature rule. Therefore, here we adopt a 
triangulation scheme with a single integration point per trian-
gle for all n-gons such that a quadrilateral element will have 
four quadrature points. The quadrature triangulation scheme 
is briefly illustrated in Fig. 2 along with the eq notation used in 
the remainder of the article, i.e., eq where the quadrature point 
index q = 1, ...,Nquad for each element index e = 1, ...,Nelem 
where Nquad varies depending on the polygonal element type 
(e.g., triangles (3 vertices), quadrilaterals (4 vertices), penta-
gons (5 vertices), etc.).

The partial derivatives depend on the selection of the set 
of independent internal variables, vi as further discussed by 
Alberdi et al. (2018). In this work, the set of internal local 
variables are  defined by veq

i
= {�

eq

i
,Δ�

eq

i
, �

p,eq

i
} , therefore 

requiring the derivatives,

at each quadrature point. We require the partial derivatives 
with respect to the internal variables at both the current time 
step,

and at the previous time step,

(42)
𝜕f

𝜕z
=

𝜕f

𝜕�

𝜕�

𝜕�̄

𝜕�̄

𝜕z
=

𝜕f

𝜕�

𝜕�

𝜕�̄
P

(43)
�f eq

�v
eq

i

=

[

�f eq

��
eq

i

,
�f eq

�Δ�
eq

i

,
�f eq

��
p,eq

i

]T

(44)
�H

eq

i

�v
eq

i

=

[

�H
eq

i

��
eq

i

,
�H

eq

i

�Δ�
eq

i

,
�H

eq

i

��
p,eq

i

]T

For an elastic step, the partials of the local residual with 
respect to the internal variables are shown below:

The partial derivatives of the local residual with respect to the 
density and nodal displacement variables in this case are zero:

For a step resulting in plastic flow, we arrive at the follow-
ing derivatives,

where we define the term Aeq

i
 by

The corresponding local residual derivatives with respect 
to the density and nodal displacement variables are deter-
mined as,

with the value Ci defined as

(45)
�H

eq

i

�v
eq

i−1

=

[

�H
eq

i

��
eq

i−1

,
�H

eq

i

�Δ�
eq

i−1

,
�H

eq

i

��
p,eq

i−1

]T

.

(46)

�H
eq

i

��
eq

i

=

⎡

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

��
eq

i−1

=

⎡

⎢

⎢

⎣

−1

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

�Δ�
eq

i

=

⎡

⎢

⎢

⎣

0

1

0

⎤

⎥

⎥

⎦

,

�H
eq

i

�Δ�
eq

i−1

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

��
p,eq

i

=

⎡

⎢

⎢

⎣

0

0

�
s

⎤

⎥

⎥

⎦

,
�H

eq

i

��
p,eq

i−1

=

⎡

⎢

⎢

⎣

0

0

−�s

⎤

⎥

⎥

⎦

(47)
�H

eq

i

��e
=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

�u
eq

i

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

�u
eq

i−1

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

(48)

�H
eq

i

��
eq

i

=

⎡

⎢

⎢

⎣

1

−H

0

⎤

⎥

⎥

⎦

,
�H

eq

i

��
eq

i−1

=

⎡

⎢

⎢

⎣

−1

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

�Δ�
eq

i

=

⎡

⎢

⎢

⎢

⎢

⎣

−1

0

−

�

3

2

s

eq

i

��s

eq

i
��

⎤

⎥

⎥

⎥

⎥

⎦

,

�H
eq

i

�Δ�
eq

i−1

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

,
�H

eq

i

��
p,eq

i

=

⎡

⎢

⎢

⎢

⎢

⎣

0

−
√

6G
s

eq

i

��s

eq

i
��

�
s + A

eq

i

⎤

⎥

⎥

⎥

⎥

⎦

,
�H

eq

i

��
p,eq

i−1

=

⎡

⎢

⎢

⎣

0

0

−�s

⎤

⎥

⎥

⎦

,

(49)A

eq

i
=

√

6GΔ𝛾

��s

eq

i
��

�

ℙ
dev −

s

eq

i

��s

eq

i
��

⊗
s

eq

i

��s

eq

i
��

�

.

(50)

�H
eq

i

��e
=

⎡

⎢

⎢

⎣

0

Ci

0

⎤

⎥

⎥

⎦

,
�H

eq

i

�u
eq

i

=

⎡

⎢

⎢

⎢

⎢

⎣

0

√

6G
s

eq

i

��s

eq

i
��

∶ B
u

−A
eq

i
∶ B

u

⎤

⎥

⎥

⎥

⎥

⎦

,
�H

eq

i

�u
eq

i−1

=

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

Fig. 2   Illustration of the e
q
 definition and the quadrature triangulation 

for the polygonal element
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4.2 � Global residual derivatives

The global residual equations are constructed from the ele-
ment level by,

where external traction loads and body forces have been 
neglected. The expressions for the partial derivatives of 
the global residual are shown below. Note that the global 
residual equation is only dependent on the state variables 
at the current time step and thus the partial derivatives 
with respect to the state variables at the previous time step, 
�Ri∕�ui−1 = �Ri∕�vi−1 = 0 . In addition, the global residual 
is only dependent on the plastic strain component of the 
local state variables leading to �Re

i
∕��i = �Re

i
∕�Δ�i = 0 . 

The nonzero partial derivatives are shown in the following 
expressions,

4.3 � Plastic work derivatives

For the partial derivatives of the plastic work objective func-
tion we start by separating the terms affiliated with the final 
time step, n and all other time steps, i = 1, ..., n − 1:

The partial derivative of the plastic work with respect to the 
element densities is determined by,

(51)Ci =
�G

��e

√

6

��s

eq

i
��

s

eq

i
∶ (�

eq

i
− �

p,eq

i
) −

�

��y

��e
+

�H

��e
�i
eq

�

.

(52)R
e
i
= ∫Ωe

B
uT ∶ si dV + pi ∫Ωe

B
uT

div
dV

(53)

�R
e

i

��e
= ∫Ωe

2
�G

��e
B
uT
:ℙ

dev
:
(

�i − �
p

i

)

dV +
��

��e
Θi+1 ∫Ωe

B
uT

div
dV

(54)

�Re

i

�u
i

= ∫Ω
e

2GB
u
T

:ℙ
dev

:B
u
dV +

�

V
e

(

∫Ω
e

B
u
T

div
dV

)(

∫Ω
e

B
u
T

div
dV

)

(55)
�Re

i

��
p

i

= −∫Ωe

2GBuT ∶ ℙ
dev dV

(56)

f (�, {un}, {vn}) =
1

2 ∫Ω

�n ∶
(

�p
n
− �

p

n−1

)

dV

+
1

2

n−1
∑

i=1
∫Ω

�i ∶
(

�
p

i+1
− �

p

i−1

)

dV

(57)

�f

��e
=

1

2 ∫Ω

�sn

��e
∶
(

�p
n
− �

p

n−1

)

dV +
1

2

n−1
∑

i=1
∫Ω

�si

��e
∶
(

�
p

i+1
− �

p

i−1

)

dV

where

Note that the pressure component of the stress is not 
included in the partial derivatives due to the assumption that 
the material is plastically incompressible where pI ∶ �p = 0 . 
The remaining partials of the plastic work, �f∕�vi and �f∕�ui 
required in Eqs. (36) and (37) are separated into expres-
sions for the final time step, n, and all previous time steps, 
i = 1, ..., n − 1 . For all time steps the plastic work does not 
explicitly depend on the equivalent plastic strain, �i , or the 
plastic multiplier, Δ�i , leading to,

The remaining partial derivatives of the plastic work are 
defined for the final time step, i = n , by,

and for all previous time steps, i = 1, .., n − 1 , by

5 � PolyPlas organization

Here we explain the PolyPlas  organization with 
special attention to its main modules. We discuss the 
��������������.�� , the polygonal element implemen-
tation details, the elastoplastic forward analysis, and most 
importantly the details involved for the implementation of the 
path-dependent sensitivity analysis. Whenever appropriate, 
we draw an analogy with the PolyTech family of educa-
tional software, including PolyTop (Talischi et al. (2012b)).

5.1 � The ��������������.��

As in ������� , we use a script file PolyPlasScript.
py to setup all the information necessary to create an 
instance of the �������� class and subsequently run the 

(58)
�si

��e
= 2

�G

��e
ℙ
dev ∶

(

�i − �
p

i

)

.

(59)
�f

��i
=

�f

�Δ�i
= 0.

(60)

�f

��
p
n

=
1

2 ∫Ω

−2Gℙdev ∶ (�p
n
− �

p

n−1
)dV +

1

2 ∫Ω

(

sn + sn−1

)

dV

(61)
�f

�un
=

1

2 ∫Ωe

2Gℙdev ∶ (�p
n
− �

p

n−1
) ∶ B

udV

(62)

�f

��
p

i

=
1

2 ∫Ω

−2Gℙdev ∶ (�
p

i+1
− �

p

i−1
)dV −

1

2 ∫Ω

(

si+1 − si−1

)

dV

(63)
�f

�ui
=

1

2 ∫Ωe

2Gℙdev ∶ (�
p

i+1
− �

p

i−1
) ∶ B

udV .
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topology optimization problem. All of the files needed to 
run the topology optimization problem are gathered with 
their file names and brief descriptions shown in Table 1. In 
addition, Fig. 3 describes each component in the sequence 
they are utilized within PolyPlasScript.py. Note that 
for the sake of clarity and good programming practice, all 
file and variable names are intended to be self-explanatory.

The PolyPlasScript.py begins with a list of all 
the available boundary value problems in PolyGeom-
etryandBCs.py. The boundary value problems are 
described by creating subclasses of the base class Bounda-
ryValueProblem which contains the abstract methods 

required to implement a new boundary value problem. For 
each BoundaryValueProblem, the domain geometry, 
boundary conditions, and applied displacement are specified. 
Note that the program is restricted to a single applied dis-
placement region but the displacement direction may occur 
in the x, y, or x and y direction. The attribute applied_
displacement_magnitude of the boundary value 
problem is intended to allow for more user flexibility within 
the PolyPlas.py script. A ���������� object is then 
created in the PolyPlasScript.py using the selected 
boundary value problem, number of elements, maximum 
polymesher iterations and a boolean variable for the use 

Table 1   Main Python files used in ��������

File name Description

�������������� Script containing all the input information required to run a �������� example
�������� Main program that conducts the nonlinear forward analysis, sensitivity analysis and 

runs the topology optimization problem
����������������� Produces ����������������������� , �������������������,

and ���_����� objects
���������� Generates polygonal finite element mesh for selected BoundaryValueProblem
������������������ Contains �������������������� subclasses to define various domains and their 

associated boundary conditions
���������� Implementation of the polynomial filter and the identity filter (no filter)
����������������� Material interpolation class construction for RAMP and SIMP interpolation
�������������� Implementation of tanh Heaviside projection and identity projection

PolyPlasScript.py

1.PolyGeometryAndBCs.py

2. PolyMesher.py 3. PolyPlasUtilities.py

4. PolyFilter.py

5. PolyProjection.py
6. PolyInterpolation.py

7. PolyPlas.py

• Class to generate polygonal mesh for 
the boundary value problem

• Generates mesh data: element 
connectivity arrays, nodal coordinates, 
and boundary conditions

• Class PolyPlasPrecomputedData 
which is used throughout PolyPlas.py 

• Additional classes for the 
currentPlasticState and the 
MMA_optimizer_state dataclass

• Class for the Polynomial filter 
• Methods of building filter matrix, 

applying filter, and apply chain 
rule of filter

• Class for Heaviside projection
• Methods for applying 

projection and apply chain 
rule of projection

• Material interpolation class 
• Methods to obtain interpolated 

value and the interpolation 
function derivative

• Main class PolyPlas which 
performs J2 return mapping, 
conducts nonlinear forward 
analysis, and runs elastoplastic 
topology optization problem

• Defines domain geometry and 
boundary conditions

• Optional attributes describing 
passive regions indices and 
regular grid element centroids

Fig. 3   Illustration of how files are integrated within PolyPlasScript.py in order to run the elastoplastic topology optimization problem
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of a regular grid; for more details on the polygonal mesh 
generation refer to Talischi et al. (2012a).

A material property Dict is defined within the script 
taking entries of the elastoplastic material properties by the 
elastic modulus, Poisson’s ratio, hardening modulus, and the 
initial yield stress, respectively. The PolyMesher object 
along with the material parameters ���� is used to obtain 
the precomputed_data object of the class Poly-
PlasPrecomputedData from PolyPlasUtili-
ties.py which contains variables that are used repeatedly 
and stay constant throughout �������� , e.g., the hardening 
modulus, the number of elements, the deviatoric projection 
tensor, and so on. To view the complete list of variables con-
tained in the PolyPlasPrecomputedData, see lines 
15 − 65 in PolyPlasUtilities.py.

Next, a design variable filter object is created, from the 
PolynomialFilter class in PolyFilter.py, which 
allows for a relative filter radius to be used via a boolean 
input. If the variable is True, the filter radius is a multi-
ple of the largest element edge length, Rused = R ∗ � and 
if False, Rused = R per the standard procedure. Here 
one can also specify the filter type, polynomial or iden-
tity (no filter), and may specify symmetry restrictions. 
Following this, the projection function object is defined 
by the ��������������.���_����������_��������() 
method which takes the projection type (tanh or identity), 
initial projection strength � , and projection threshold � as 
input. Afterward, the material interpolation schemes for 
the elastic and plastic material parameters are defined, 
where each is an instance of an interpolation class from 
the �����������������.�� file. The material interpola-
tion is created by specifying the type of material interpola-
tion (SIMP or RAMP), ersatz parameter, and penalization 
parameter. Note that the penalization parameter is updated 
during optimization via a continuation strategy present in 
the get_function_values_and_gradients() 
method of PolyPlas.py. Such a continuation strategy 

greatly improves numerical stability in the elastoplastic opti-
mization problem. Finally, the �������� object is created in 
the script file using the aforementioned variables as shown 
on lines 90 − 100 of PolyPlasScript.py. To see a 
complete list of all input variables and their corresponding 
types, see the summary in Table 2.

Before running the topology optimization problem, the 
���_����� object is created as an instance of the MMA_
Optimizer_state  class in lines 122 − 185 in the 
�����������������.�� file. This object stores all relevant 
information needed in updating the design variables using 
the well-known Method of Moving Asymptotes (MMA) 
optimizer (Svanberg 1987). Finally, the run_top_opt_
problem() method from ��������.�� is called in the 
script followed by methods plot_density_field() and 
plot_optimization_history(). The implementa-
tion details involved in solving the topology optimization 
problem in �������� are described in detail in the follow-
ing sections.

5.2 � Polygonal element implementation details

The generation of the polygonal finite element information is 
conducted in PolyPlasUtilities.py which contains 
functions pertaining to the triangulation of the polygons in 
get_polygonal_triangulation(), gathering of 
the quadrature point information in get_polygonal_
element_quadrature(), and functions on obtaining 
the shape function value and gradient information, as shown 
in lines 239 − 360 . The procedure for obtaining the polygo-
nal finite element information follows the standard approach 
as outlined in Talischi et al. (2012a).

An important feature to notice when considering polygo-
nal finite elements in the PolyPlas program is the loop-
ing over the polygonal element types and the creation of 
dictionaries with keys pertaining to the number of vertices 
in each polygonal element type. This is necessary for the 

Table 2   List of inputs in 
PolyPlas class

Variable name

������_��������_������ Instance of ���������� class
�������_��������_������������� Instance of ���������������������������� class
�������_��������_������������� Instance of ���������������������������� class
���������� Instance of �������������� class
�������_����������_�������� Maximum projection strength
�����������_���� Instance of ����������������������� class
������_��������_�����_����� Vmax from Eq. (31), type: �����
������_��_����_����� Number of pseudo-time steps for forward analysis, type: ���
���������_���� Directory name for storing output data, type: ������
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computations due to the dimensions affiliated with the ele-
ment degrees of freedom varying per polygonal element 
type. An example of this is demonstrated in the code snip-
pet below in which the plastic work objective function is 
updated within the method run_forward_analysis() 
in PolyPlas.py lines 442 − 458 at the current time step. 

Here each entry in the array unique_number_of_
vertices corresponds to the number of vertices in each of 
the unique element types. The objective function is updated 
numerically following Eq. (32). The relevant information 
from the state variable pertaining to the current time step 
is used in computing the deviatoric_stress_ten-
sor_value and the plastic_strain_difference. 
These variables are then used in the function oe.con-
tract which performs the tensor contraction operation 
using conventional Einstein notation. Further information 
on how to use the oe.contract function can be found in 
the tutorial outlined in Appendix C.

5.2.1 � Standard bilinear quadrilateral element 
implementation

If this user instead desires to use standard bilinear quadrilat-
eral (Q4) elements in their analysis, they can do so by utiliz-
ing the functions we have implemented in the PolyPlas-
Utilities.py file. These functions include the standard 
approach in obtaining the quadrature point information and 
the respective shape function values and gradients as can 
be seen in PolyPlasUtilities.py lines 364 − 436 . 

when initializing the PolyMesher object in the Poly-
PlasScript.py. Note that the regular grid can only be 
imposed on rectangular-type domains; this highlights the 
benefits of using polygonal finite elements which can mesh 
arbitrary, curved domains.

5.3 � Elastoplastic forward analysis

The elastoplastic forward analysis needs to be performed at 
every optimization iteration which is why topology optimiza-
tion with elastoplasticity can be a very computationally expen-
sive task. As mentioned previously, the equations are solved 
incrementally using a fully implicit pseudo-time integration 
scheme and, within each increment, the nodal displacements 
are updated using a global Newton Raphson iteration. Both the 
time integration and Newton iteration loops are located in the 
run_forward_analysis() method within PolyPlas.
py on lines 372 − 414 . The update of the global and local state 
variables is performed using the method, update_state(). 
To do this the method update_state() calls other Poly-
Plas methods get_element_quantities() and 

To use these functions the user simply has to call the func-
tion get_shape_function_table_and_quadra-
ture_weights_quad_element_type() as shown 
in line 673. Additionally, the user has to ensure that the 
mesh is composed of a structured grid by setting the vari-
able, use_regular_grid_if_implemented=True, 
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get_J2_update(). The method get_element_quan-
tities() is used to compute the element level contributions 
to the global residual vector and the tangent stiffness matrix. 
The return mapping procedure outlined in Appendix A takes 
place in get_J2_update() and the supplied total_
strain_tensors are computed under the assumption of 
plane strain. Note that all stress and strain tensors in Poly-
Plas are stored as 3x3 matrices, enabling easier extension to 
three-dimensional problems. The element residual and element 
Jacobian matrices are then computed in a loop over each ele-
ment type, beginning with the Jacobian matrices as shown in 
Eq. (14),

 

Similarly the element residual vectors are computed following Eq. (11) by,

The element residual and Jacobian information is used 
to assemble the global system of equations and to deter-
mine the update of the nodal displacement vector. The 
global Newton Raphson iteration continues until the rela-
tive residual norm is less than the specified tolerance, 
‖R

m
rel
‖ ≡ ‖R

m
‖∕‖R0

‖ < tolNR , as shown in the method 
run_forward_analysis(). Within the Newton 
Raphson scheme, a backtracking line search procedure is 
conducted for improved convergence stability in the non-
linear forward analysis. Once the global equilibrium equa-
tions have converged for the given time step, the state 
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Algorithm 1   Global equilibrium iteration with inexact line search

object is saved, storing all relevant physical data for that 
time index. The state object is an instance of the class 
currentPlasticState, to view all the variables 
stored within state see lines  in the PolyPlasUtil-
ities.py file. The state was initialized and stored 
within the PolyPlas object by the get_initial_
plastic_state() function from PolyPlasUtil-
ities.py lines 898 − 932 . Storing the state data at 
each time step is crucial in computing the path-dependent 

sensitivity analysis which is further elaborated upon in 
Sect. 5.4.1. Subsequently after saving the state, the 
method transfer_state() of the class current-
PlasticState is called to store the current state varia-
ble values (⋅)i in the entries named with “previous" (⋅)i−1 , in 
preparation for the next time increment. For more details 
on the nonlinear finite element routine, including the 
global Newton iteration with line search, see Algorithm 1.
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5.4 � Sensitivity analysis implementation

This section places strong emphasis on the algorithm used in 
conducting the path-dependent sensitivity analysis (begin-
ning with the final time step and working backward) along 
with a thorough explanation on the procedure involved in 
carrying out the partial derivatives of the local residual 

vector. These details are crucial for the implementation of 
topology optimization considering path-dependent physics.

5.4.1 � Path‑dependent procedure

The path-dependent sensitivity analysis is computed by call-
ing the �������_���������_��������_�����������() 
method in �������� . Here the procedure begins by load-
ing the state at the final time step n by:
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Fig. 4   The local residual derivative with respect to the local internal variables for a single quadrature point in the elastic region (left) and in the 
plastic region (right)
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This returns the state from the final time step i = n , 
which is used to assemble and solve the system of equa-
tions in (38) and (39). The procedure begins at the final 
time step since the adjoint vectors at the current time step, 
�
i
 and �i , are dependent on the adjoint vectors at the next 

time step, �
i+1

 and �i+1 , as observed in Eq. (37). The system 

of adjoint equations is formed and solved in the method 
�������_�����������_������������() . Within this 
function the required partial derivatives of the local resid-
ual, global residual, and plastic work objective function 
are computed. The local residual derivatives in the method 
�������_�����_��������_�����������_���_����_����() are 
discussed in more detail in the following section. The 
�������_�����������_������������() function updates 
the objective function sensitivity after determining the �T

i
 

and �T
i
 adjoint vectors and returns the components of the 

updated Fi−1
c

 and Fi−1
u

 terms associated with the �Hi∕�vi−1 
and �Hi∕�ui−1 derivatives. This method is then called again 
in a for loop for the remaining time steps, i = n − 1, ..., 1 , 
until the final update of the analytical expression for the 
augmented objective function sensitivity from Eq. (40) is 
complete. For further information on the procedure, see 
Algorithm 2. The final step for obtaining the complete 
sensitivity with respect to the design variables, 𝜕f̂∕𝜕z is 
to apply the chain rule as shown in Eq. (42). To observe 
the verification of the implemented sensitivity analysis in 
PolyPlas, see Appendix B.

Start

End

Initialize variables
iteration,            

Filter and project DV

Elastoplastic forward analysis
saving  for each time step

Path dependent sensitivity analysis
                                  to obtain                and                                                          

Perform MMA update scheme

iter < max iter
and

                             > tol

NoYes

Fig. 5   Flowchart of topology optimization procedure

Table 3   Material parameters of Aluminum 2024-T351

E [MPa] � �
y0 [MPa] H [MPa]

74633.0 0.3 344.0 2000.0

d

L

u

c c

_

a

b

Fig. 6   Portal frame domain and boundary conditions
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Fig. 7   Portal frame results featuring: the optimized topology (top-
left), the accumulated plastic strain distribution in the optimized 
structure (top-right), the deviatoric plane with 12,464 quadrature 

points on the yield surface (bottom-left), and the von Mises stress dis-
tribution of the optimized structure (bottom-right)

Fig. 8   Portal frame a objective function convergence history; b penalization and projection schemes information; c forward analysis reaction 
force versus absolute applied displacement of the final optimized structure

Fig. 9   The optimized topologies of the Portal frame for three cases of applied displacement: u
y
= −0.5 mm (left), u

y
= −1.0 mm (middle), and 

u
y
= −1.5 mm (right)
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Algorithm 2   Procedure for path-dependent sensitivity analysis

dimensional array with dimensions of (q, nlocal
dof

, nlocal
dof

) where 
q represents the total number of quadrature points per ele-
ment type and nlocal

dof
 represents the total number of local 

degrees of freedom (i.e., the internal local variables: 
�eq ,Δ�eq , �

p,eq
xx , �

p,eq
yy , �

p,eq
xy , �

p,eq
zz  ). The layout of the local resid-

ual derivative with respect to the local variables for a single 
quadrature point is shown for both the elastic and plastic step 
in Fig. 4. Note that the eq terms in the superscripts of the 
partials are omitted for conciseness.

One can interpret this implementation as the rows cor-
responding to the update rules of the internal local variables 
and the columns corresponding to the internal local variable 
of differentiation. The definition of the update laws is shown 
in Eqs. (23) and (24) where the update of the accumulated 
plastic strain �i corresponds to hi,1 , the update of the plastic 
multiplier Δ�i partially governed by the yield function in 
hi,2 , and the update of the plastic strain �p

i
 corresponding 

to the flow rule by hi,3 . Here the superscripts of the flow 
rule hjk

i,3
 correspond to the jkth component of the tensor. We 

also denote �p
11

= �
p
xx, �

p

22
= �

p
yy, �

p

12
= �

p
xy, �

p

33
= �

p
zz . This 

derivative is computed in the method compute_local_
residual_sensitivity_per_elem_type(), on 
lines 1135 − 1384 . The procedure begins by creating an 
array containing all quadrature point indices undergoing 
elastic loading denoted by elastic_indices which are 
then used to compute the local_residual_deriva-
tive_wrt_current_local_variables_per_
elem_type values using the partial derivative expres-
sions formerly derived in Eqs. (46). For the fourth order 
tensor of the partial, �hi,3∕��

p

i
= �

sym , the first two indices 
correspond to the components of the local residual equa-
tion and the last two indices represent the plastic strain 
tensor component. The implementation of this is shown 

u

d

L

L

L

L

L

_

Fig. 10   Corbel domain and boundary conditions

5.4.2 � Local residual derivatives

Here we present a description of the local residual partial 
derivatives in the PolyPlas program, primarily focusing 
on the implementation of the local residual partial derivative 
with respect to the current internal local variables, 
�H

eq

i
∕�v

eq

i
 . While the explicit expressions for the local resid-

ual derivatives were shown in Sect. 4.1, here we demonstrate 
how the partial derivatives were organized and implemented. 
The local residual derivative is stored as a higher 
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Fig. 11   Results of the Corbel structure showcasing the optimized 
topology and the distribution of the accumulated plastic strain and 
the von Mises stress for three different combinations of applied dis-
placements: a an applied displacement of ū

x
= 1.0 mm with a final 

plastic work of Wp = 1587.46 N-mm , b an applied displacement of 
ū
y
= −1.0 mm with a final plastic work of Wp = 431.37 N-mm , and 

c an applied displacement of ū
x
= 0.05 mm and ū

y
= −1.0 mm with a 

final plastic work of Wp = 463.86 N-mm
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Fig. 12   Deviatoric plane next to the corresponding Corbel structure containing a 4,361 quadrature points on the yield surface, b 6,893 quadra-
ture points on the yield surface, and c 6,796 quadrature points on the yield surface, out of a total of 148,083 quadrature points

(a) (b) 

(c) (d) 

Fig. 13   Corbel optimization details including the convergence plots with their corresponding structures in parts a–c and d the material penaliza-
tion parameters and projection strength histories
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Fig. 14   Geometries and boundary conditions of the curved domains: a the Serpentine domain and b the Curved beam
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Fig. 15   Results of the Serpentine domain (left) and Curved beam (right) with a illustrating the optimized topology, b the distribution of the 
accumulated plastic strain and (c) the distribution of the von Mises stress
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on lines 1208 − 1230 . The remaining partial derivatives, 
�hi,1∕��i = �hi,2∕�Δ�i = 1.0 are inserted into the local_
residual_derivative_wrt_current_local_
variables_per_elem_type tensor to resemble the 
left matrix in Fig. 4.

For the quadrature points undergoing plastic flow, which 
we index by plastic_indices , the computation 
requires additional implementation steps using the oe.
contract method. An example of this is shown in the 
computation of the flow rule derivative with respect to the 
plastic multiplier, �hi,3∕�Δ�i . 

Once this is computed, the components of this ten-
sor are inserted into their corresponding locations in the 
local_residual_derivative_wrt_current_
local_variables_per_elem_type array, see lines 
1332 − 1335 in PolyPlas.py for reference. The remain-
ing partial derivatives are computed and stored similarly, 
along with the derivative of the local residual with respect 
to the previous local variables �Hi∕�vi−1 . The remaining 
derivatives �Hi∕�ui , �Hi∕�ui−1 , and �Hi∕��e are computed 
and stored in a similar manner as well, corresponding to 
Eqs. (47) and (50).

The correct implementation of the path-dependent sen-
sitivity analysis is a nontrivial task. In addition to the finite 
difference checker of the objective function and volume 
function derivatives with respect to the design variables in 
the PolyPlas method finite_difference_sensi-
tivity_checker(), there exist multiple unit tests in 

test_polyplas.py which perform individual finite 
difference checks on each explicit partial derivative to help 
ensure accuracy. These unit tests played a significant role in 
the development of the complete sensitivity analysis and a 
similar protocol is advised for one who aims to extend this 
framework.

5.5 � Topology optimization procedure overview

Here, flowchart 5 is presented to guide the reader through 
all the pieces involved in the topology optimization 

Fig. 16   Optimization details of the curved domains with the objective function convergence for the Serpentine domain (left) and for the Curved 
beam (middle), with their corresponding projection strengths and material penalization parameters (right)

procedure considering elastoplasticity. The main method, 
���_���_���_�������() , drives the solutions of the topol-
ogy optimization problem. This method takes the ���_����� , 
the maximum number of optimization iterations, the conver-
gence tolerance, and the �����_���� boolean variable as 
input. Within this method the design variables z are filtered 
and projected to obtain � which are the physical density vari-
ables used in the elastoplastic forward analysis. The method 
���_��������_������_���_���������() calls methods to 
run the elastoplastic forward analysis, obtain the plastic work 
objective function, and obtain the sensitivity information for 
both the objective function, 𝜕f̂∕𝜕z and the volume constraint, 
�g∕�z . Although in this framework the plastic work objective 
function is chosen, the design of PolyPlas is highly modu-
lar, allowing for easy extension to other objective functions. 
Within this method, the appropriate material interpolation and 
projection scheme parameters are updated in a continuation 
scheme. Back in the ���_���_���_�������() method, the 
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objective function is scaled using the absolute value of the 
objective function at the first optimization iteration, while 
the volume constraint is scaled based the magnitude of the 
bound, both of which help to ensure optimal performance of 
the MMA algorithm. Next the �������_������_������() 
method updates the design variables using an adaptation of the 
MMA implementation by Deetman (2024) (a Python imple-
mentation of the original Matlab MMA code by Svanberg 
(1987)). The iteration continues until either the maximum 
number of optimization iterations has been reached or the L∞ 
norm of the design variable update is less than the specified 
tolerance (see Fig. 5).

6 � Numerical examples

The numerical results presented in this section are intended 
to showcase the capabilities of the PolyPlas program 
and highlight a few key features. A summary of the example 
domains and problem setup information is provided in Appen-
dix D. Note that for all examples we employ a continuation 
strategy on both the elastic and plastic penalization parameters 
to help alleviate numerical issues associated with large plas-
tic strains in low-density regions. We begin with exponents 
p = 1, q = 0.5 and increase their values by 0.5 after every 
25 optimization iterations until they reach p = 4, q = 3.5 at 
j = 75 . After the continuation on the material interpolation, 
a continuation scheme is imposed on the projection strength 
as well, see Sect. 3.2 for details. The material parameters are 
the same across all examples and are set to closely align with 
the material properties calibrated for Aluminum 2024-T351 
(Bao and Wierzbicki 2004), see Table 3. The optimization 
problem is updated using the Method of Moving Asymptotes 
with a move limit of 0.5. To help prevent divergence, the 
applied displacement is slowly increased such that the first 
few increments correspond to primarily elastic loading before 
transitioning into plastic deformation. Such an approach is 

recommended for all examples to help ensure the convergence 
of the elastoplastic forward analysis during the optimization 
process. Further information regarding the problem setup can 
be found in each problem’s description below.

6.1 � Portal frame

This first example analyzes the portal frame which is a typical 
benchmark problem found in the elastoplastic topology opti-
mization literature. The portal frame domain and boundary 
conditions are illustrated in Fig. 6 where the dimensions are 
set by L = 60 mm, a = 12.5 mm, b = 17.5 mm, c = 2.75 mm, 
and d = 4 mm. Half of the domain is analyzed for computa-
tional efficiency using the HalfPortalFrame boundary 
value problem with a finite element mesh composed of 20,500 
polygonal elements. The polynomial filter is used with a filter 
radius of R = 1.0 mm and the volume fraction upper bound 
is set to Vmax = 0.4 . The forward problem is run with 14 time 
steps for a final total applied displacement of ūy = −1.0 mm. 
The optimization parameters include a maximum number of 
iterations of 300, and a convergence tolerance of tol = 10−8.

Maximizing plastic work leads to energy absorbing elas-
toplastic structures as illustrated in Fig. 7. It is observed 
that the structure undergoes a significant amount of plastic 
strain where a high concentration of the accumulated plastic 
strain forms between the applied displacement region and 
the re-entrant corner of the frame, in addition to the region 
around the supports. Regions of high von Mises stress cor-
respond to the regions of high accumulated plastic strain, as 
consistent with the von Mises yield criteria. The normalized 
deviatoric plane is shown illustrating the 12,464 quadrature 
points that are on the yield surface where ∼ 10.26% of all 
quadrature points are undergoing plastic flow. The final plas-
tic work of the structure is Wp = 276.96 N-mm . Addition-
ally, the unscaled objective function convergence history is 

Fig. 17   Deviatoric planes for the curved domains; a the Curved beam 
with 767 quadrature points on the yield surface from a total of 94,650 
and b the Serpentine domain with 2,  131 quadrature points on the 
yield surface from a total of 94,628

(a) 

(b) 

0.69

0.64

3 mm

1 mm

Fig. 18   Illustration of the cantilever beam used in the sensitivity anal-
ysis verification with a dimensions and boundary conditions and b 
the random density distribution
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shown in Fig. 8a where the spikes in the convergence corre-
spond to the parameter updates in the continuation scheme, 
shown in Fig. 8b. Lastly, we show the forward analysis of the 
final optimized topology plotting the reaction force versus 
the applied displacement in Fig. 8c, where we observe the 
transition from a predominantly elastic response to a plastic 
response.

6.1.1 � Applied displacement magnitude review

To examine the affect of the applied displacement magni-
tude on the elastoplastic topology optimization problem, we 
examine two additional applied displacement cases for the 
Portal frame: uy = −0.5 mm over 7 pseudo-time steps and 
uy = −1.5 mm over 21 pseudo-time steps. The time steps are 
defined such that all cases have the same applied displace-
ment increment size. The examples have the same problem 
setup information as indicated in the previous Portal frame 
result. The final topologies, including the original example 
from Sect. 6.1, are shown in Fig. 9. From these results, we 
observe how even a slight change in the applied displace-
ment leads to drastically different final designs. The plastic 
work objectives are reported as Wp = 65.74 N-mm for the 
case of uy = −0.5 mm, Wp = 276.96 N-mm for uy = −1.0 
mm (from the previous example), and Wp = 613.71 N-mm 
for the final case of uy = −1.5 mm.

6.2 � Corbel structure

Here, the Corbel structure is optimized for three different 
applied displacement combinations. The Corbel has a side 

length, L = 40 mm and an applied displacement region 
width of d = 3.2 mm with boundary conditions shown in 
Fig. 10. The finite element mesh is composed of 25,000 
unstructured polygonal elements and contains a passive 
region near the applied displacement boundary with a size of 
d × w where w = 8.0� . This was placed in an effort to avoid 
numerical instabilities related to high plastic strains near 
the applied displacement boundary. The polynomial filter is 
used with a filter radius of R = 3.0 mm. We examine three 
load cases with displacement applied over 14 time steps; 
(a) ūx = 1.0 mm ūy = 0.0 mm, (b) ūx = 0.0 mm ūy = −1.0 
mm, and (c) ūx = 0.05 mm ūy = −1.0 mm. The continuation 
on the projection strength and material interpolation expo-
nents is shown in Fig. 13. Finally, the domain is optimized 
considering a volume fraction upper bound of Vmax = 0.35 , 
a maximum number of optimization iterations of 250, and a 
convergence tolerance of tol = 5.0 ⋅ 10−4.

As observed in Fig. 11, the direction of the applied dis-
placements leads to vastly different topologies. For the first 
example in Fig. 11 part (a), the topology contains two main 
thick members to maximize plastic work for displacement in 
the x direction. We also notice high regions of accumulated 
plastic strains and von Mises stress around the region of 
applied displacement and in the re-entrant corners. For the 
Corbel structure subject to displacement in the y direction 
in Fig. 11 part (b) we observe additional members in the 
topology which act as bracing to maximize energy absorp-
tion for the downward displacement. Although both of the 
previous applied displacements form a symmetric boundary 
value problem, symmetry is not imposed and thus we do not 
obtain perfect symmetry due to the unstructured mesh. For 

(a) (b) 

Fig. 19   Comparison of the numerical and analytical sensitivities for a the objective function (i.e., plastic work) and b the volume fraction along 
with the corresponding percent difference
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the final applied loading case in Fig. 11 part (c), we added 
a small contribution of applied displacement in the x direc-
tion in addition to the same previous applied displacement 
in case (b). With this, we obtain an asymmetric design with 
a significant portion of the structure’s volume in the top half 
of the domain. While the final topologies of the final two 
applied displacement cases don’t resemble each other, their 
deviatoric plane do with similar principal stress distribu-
tion as observed in Fig. 12. The deviatoric plane for case 
(a) shows a larger distribution of quadrature points near the 
yield surface; however, there are fewer quadrature points on 
the yield surface at 4,361 versus the 6,893 and 6,796 quad-
rature points for cases (b) and (c), respectively. Finally, the 
convergence plots are shown in Fig. 13 where all examples 
reach the maximum number of optimization iterations.

6.3 � Curved domains

The final numerical examples presented here showcase an 
important feature of unstructured polygonal elements: the 
meshing of complex, curved domains. Here, we optimize 
two curved cantilever beams, the first of which we denote 
as the Serpentine domain and the second which we call the 
Curved beam, as shown in Fig. 14. The Serpentine domain 
has dimensions defined by origins, O1 = (0,−2.6458 mm) 
and O2 = (9 mm, 5.2915 mm) and curves defined by 
c1 = (O1, 8.0 mm) , c2 = (O1, 4.0 mm) , c3 = (O2, 4.0 mm) , 
and  c4 = (O2, 8.0 mm)  fo l l owing  t he  no t a t i on 
c = (origin, radius) ; it also has an applied displacement 
width of d = 0.53 mm. The Curved beam obtains dimen-
sions of O1 = (0.0, 0.0) with curves c1 = (O1, 10.0 mm) and 
c2 = (O1, 20.0 mm) with an applied displacement width of 
d = 2.5 mm. The Serpentine domain has an applied displace-
ment of ūy = −0.5 mm and the Curved beam has an applied 
displacement of ūx = 0.5 mm, both imposed over 14 time 
steps. Both structures are meshed with 16,000 polygonal 
elements, are subject to a volume fraction upper bound of 
Vmax = 0.4 , and use a polynomial filter with a relative radius 
of R = 5.0� . For the Curved beam we impose symmetry 
about the y-axis (see Fig. 15).

The results of the curved domains are shown in Fig. 15 
where the Serpentine domain has large amounts of accu-
mulated plastic strains near the supports and the applied 
displacement region. The Curved domain instead experi-
ences high accumulated plastic strain in the inner, center 
location of the beam. The final plastic work of the Curved 
beam and the Serpentine domain are Wp = 28.05 N-mm and 
Wp = 9.44 N-mm as seen in the unscaled objective function 
convergence plots in Fig. 16. In addition, because both of 
the domains use the relative filter radius, they also have the 
same maximum projection strength. The stress states are 
illustrated in Fig. 17.

7 � Conclusion

This paper places significant emphasis on the topology opti-
mization methodology considering elastoplasticity for peda-
gogical purposes, from the nonlinear forward problem to the 
complex path-dependent sensitivity analysis. The authors 
motivate the use of the oe.contract method from the 
opt-einsum package for an educational and intuitive 
transition from equations on paper to implementation in 
code. The PolyPlas program is demonstrated to produce 
optimized results with high energy absorption through the 
framework of maximizing the plastic work.

A detailed discussion on the theoretical framework of 
elastoplastic topology optimization is presented in con-
junction with providing a modular, open-source program, 
PolyPlas. This code is inspired by the preexisting Poly-
Top programs; however, it is developed in an entirely new 
framework in Python utilizing object oriented programming 
for improved modularity and organization. We wish to add 
to the library of educational topology optimization codes 
considering unstructured polygonal elements. Similar to 
the former developments, PolyPlas contains a general 
framework allowing the consideration of complex domain 
geometries, utilizing a Python implementation of Poly-
Mesher. By introducing an educational code for topol-
ogy optimization considering elastoplasticity, we hope that 
PolyPlas stimulates further advancement in the field of 
topology optimization considering energy-dissipative phe-
nomena by means of an open-source program for academic 
and industrial users alike.

Appendix A Return mapping algorithm

Here, the standard return mapping algorithm is described 
as presented in de Souza Neto et al. (2011). The procedure 
of updating the state variables at the next pseudo-time step 
begins with the elastic trial state,

If the trial state is admissible, (i.e., Φ(strial
i+1

, �trial
i+1

) ≤ 0 ), then 
it is accepted,

(64)�
p,trial

i+1
= �

p

i

(65)s
trial
i+1

= 2Gℙdev(�i+1 − �
p,trial

i+1
)

(66)�trial
i+1

= �i.

(67)�
p

i+1
= �

p,trial

i+1
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where we also provide the deviatoric part of the consist-
ent tangent, ℂdev

i+1
 . If the trial state is not admissible (i.e., 

Φ(strial
i+1

, 𝛼trial
i+1

) > 0 ), then the radial return mapping is per-
formed. The corresponding update of the plastic multiplier 
increment may be expressed in closed form for the linear 
hardening rule assumed in this work:

Alternatively, one could extend this framework to nonlinear 
hardening functions in which the plastic multiplier incre-
ment may be determined via a local Newton iteration. The 
corresponding update of the state variables for the plastic 
step is provided below, along with the deviatoric part of the 
consistent tangent.

Appendix B Sensitivity analysis verification

Here, the details regarding the sensitivity analysis verifi-
cation are presented. A cantilever beam is analyzed with 
a downward prescribed displacement of −0.1 mm , applied 
over 10 time steps with material properties as shown in 
Table 3 and a finite element mesh composed of 300 polygo-
nal elements. The dimensions and boundary conditions are 
depicted in Fig. 18.

The numerical sensitivities are obtained by the central 
finite difference method,

(68)si+1 = s
trial
i+1

(69)�i+1 = �trial
i+1

(70)ℂ
dev
i+1

= 2Gℙdev

(71)Δ�i+1 =
Φ(strial

i+1
, �trial

n+1
)

3G + H

(72)�
p

i+1
= �

p,trial

i+1
+ Δ�N

(73)si+1 =

(

1 −
Δ�3G

qtrial
i+1

)

s
trial
i+1

(74)�i+1 = �trial
i+1

+ Δ�

(75)

ℂ
dev
i+1

= 2G

(

1 −
Δ𝛾3G

qtrial
i+1

)

ℙ
dev + 6G2

(

Δ𝛾

qtrial
i+1

−
1

3G + H

)

N⊗ N

where the Δxi denotes a vector with the only nonzero per-
turbation of 10−6 corresponding to design variable i. The 
numerical sensitivity is computed for each design variable 
and is compared against the analytical sensitivity as shown 
in Fig. 19. This procedure is performed in the PolyPlas 
function finite_difference_sensitivity_checker().

Appendix C The oe.contract tutorial

The oe.contract method from the opt-einsum 
package (Daniel and Gray, 2018) is a powerful tool used 
in the PolyPlas program to evaluate expressions in Ein-
stein summation convention. For mechanicians this ena-
bles a smoother transition from the derivations on paper to 
the implementation in code. This package was built off of 
Numpy​’s einsu​m packa​ge (Harris et al. 2020) to perform 
in the same way as the np.einsum method; however, it 
reduces the execution time of large einsum operations by 
using algorithms to optimize the execution of complex con-
tractions. This tutorial aims to demonstrate some examples 
relating the mechanics equations to their corresponding oe.
contract application. For more information on the opt_
einsum package, see the offic​ial docum​entat​ion.

Starting off with the standard linear elastic relationship 
for the Cauchy stress tensor by the contraction of the fourth 
order isotropic material tensor and the elastic strain tensor 
we have the following in summation notation,

which may be written equivalently in the program by,

where the first argument in oe.contract contains the 
indices of the input variables and the indices of the resulting 
tensor are placed to the right of the arrow. For scalar output, 
there are no indices places to the right of the arrow. The 
remaining entries correspond to the tensorial inputs for the 
described operation (e.g., the material constitutive tensor 
and the elastic strain tensor).

For further flexibility, oe.contract also allows 
alternative array operations that may not follow the stand-
ard rules of classical Einstein notation. An example of this 
that is commonly used in PolyPlas includes computing a 
contraction in a vectorized fashion for all elements and/or 
quadrature points simultaneously. Using the same equation 

(76)
df (x)

dxi
≈

f (x + Δxi) − f (x − Δxi)

2Δx

(77)�ij = ℂijkl�kl

(78)stress = oe.contract("ijkl,kl->ij", material_tensor, elastic_strain)

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://optimized-einsum.readthedocs.io/en/stable/
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as before, one could instead compute the stress tensor for 
each quadrature point in every element by,

Notice that this operation doesn’t follow the standard Ein-
stein summation rules since the repeated eq indices don’t 
behave as dummy indices and no summation is performed 
over them. Instead, the output results in a contraction opera-
tion performed over k and l only.

Below, we present a few more examples of indicial 
notation expressions and their corresponding implemen-
tation in code. This next example demonstrates how the 
‘...’ entry broadcasts a constant scalar in the contraction 
operation when computing the deviatoric stress,

with its corresponding oe.contract implementation 
performed via

Next a portion of the flow rule derivative with respect to the 
plastic strain is shown below to showcase how to implement 

(79)stress = oe.contract("eqijkl,eqkl->eqij", material_tensor, elastic_strain).

(80)sij = 2Gℙdev
ijkl

�kl

(81)deviatoric_stress =oe.contract("...,ijkl,eqkl->eqij",

(82)2.0 * shear_modulus,

(83)deviatoric_projection_tensor,

(84)elastic_strain).

outer products in the oe.contract operation. A portion 
of this partial derivative expression is denoted by cijkl and 

temp_1 in the code.

Here the q index refers to the total number of quadrature 
points per element type. The indices can represent any 
dimension so long as they are consistent within the opera-
tion. To view the full implementation of the partial deriva-
tive of the flow rule with respect to the plastic strain as seen 
in Eqs. (48) and 49, see lines 1299 − 1306 and 1341 − 1359 
of PolyPlas.py.

Appendix D Library of benchmark examples

Table 4.

(85)cijkl =
s⊗ s

||s||

=
sijskl

(sabsab)
1∕2

(86)temp_1 =oe.contract("qij,qkl->qijkl",

(87)deviatoric_stress_over_deviatoric_stress_norm,

(88)deviatoric_stress_over_deviatoric_stress_norm)
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Table 4   Examples provided 
with PolyPlas 

Domain Description

d

Lc c

a

b

u

 

∙ Domain: HalfPortalFrame
∙ Dimensions: L = 60 mm, a = 12.5 mm, b = 17.5 

mm, c = 2.75 mm
∙ Applied displacement: ūy = 1.0 over 14 time steps

u

d

L

L

L

L

L

_
y

u
_
x

 

∙ Domain: Corbel
∙ Dimensions: L = 60 mm, d = 3.2 mm
∙ Applied displacement: (a) ūx = 1.0 mm ūy = 0.0 

mm, (b) ūx = 0.0 mm ūy = −1.0 mm, and (c) 
ūx = 0.05 mm ūy = −1.0 mm; over 14 time steps

c1

c2

c4

c3

O1

O2

u
_

 

∙ Domain: SerpentineDomain
∙ Dimensions: O1 = (0,−2.6458 mm) , 
O2 = (9 mm, 5.2915 mm) , c1 = (O1, 8.0 mm) , 
c2 = (O1, 4.0 mm) , c3 = (O2, 4.0 mm) , 
c4 = (O2, 8.0 mm) , d = 0.53 mm

∙ Applied displacement: ūy = 0.5 over 14 time steps

u
_

O1

c1
c2 d

 

∙ Domain: CurvedBeam
∙ Dimensions: O1 = (0.0, 0.0) , c1 = (O1, 10.0 mm) , 
c2 = (O1, 20.0 mm) , d = 2.5 mm

∙ Applied displacement: ūx = 0.5 over 14 time steps

https://github.com/emilyalcazar1/PolyPlas.git
https://github.com/emilyalcazar1/PolyPlas.git
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